Skip to Content

Gerhard Klimeck

Purdue University

Materials Research

2018

Tarek A Ameen, Hesameddin Ilatikhameneh, Archana Tankasala, Yuling Hsueh, James Charles, Jim Fonseca, Michael Povolotskyi, Jun Oh Kim, Sanjay Krishna, Monica S Allen, Jeffery W Allen, Rajib Rahman, and Gerhard Klimeck (2018): Theoretical Study of Strain-Dependent Optical Absorption in a Doped Self-Assembled InAs/InGaAs/GaAs/AlGaAs Quantum Dot, Beilstein Journal of Nanotechnology, Beilstein Institut, Vol 9, pp1075--1084
H. Sahasrabudhe, B. Novakovic, J. Nakamura, S. Fallahi, M. Povolotskyi, G. Klimeck, R. Rahman, and M. J. Manfra (2018): Optimization of Edge State Velocity in the Integer Quantum Hall Regime, Physical Review B, American Physical Society (APS), Vol 97, Num 8, pp085302
Daniel Valencia, Evan Wilson, Zhengping Jiang, Gustavo A. Valencia-Zapata, Kuang-Chung Wang, Gerhard Klimeck, and Michael Povolotskyi (2018): Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network, Physical Review Applied, American Physical Society (APS), Vol 9, Num 4, pp044005
Archana Tankasala, Joseph Salfi, Juanita Bocquel, Benoit Voisin, Muhammad Usman, Gerhard Klimeck, Michelle Y. Simmons, Lloyd C. L. Hollenberg, Sven Rogge, and Rajib Rahman (2018): Two-Electron States of a Group-v Donor in Silicon from Atomistic Full Configuration Interactions, Physical Review B, American Physical Society (APS), Vol 97, Num 19, pp195301
Pengyu Long, Jun Z. Huang, Michael Povolotskyi, Prasad Sarangapani, Gustavo A. Valencia-Zapata, Tillmann Kubis, Mark J. W. Rodwell, and Gerhard Klimeck (2018): Atomistic Modeling Trap-Assisted Tunneling in Hole Tunnel Field Effect Transistors, Journal of Applied Physics, AIP Publishing, Vol 123, Num 17, pp174504

2017

Pengyu Long, Michael Povolotskyi, Jun Z. Huang, James Charles, Tillmann Kubis, Gerhard Klimeck, and Mark J. W. Rodwell (2017): A High-Current InP-Channel Triple Heterojunction Tunnel Transistor Design, IEEE, 2017 75th Annual Device Research Conference (DRC), pp1-2, South Bend, Indiana, U.S.A.
Junzhe Geng, Prasad Sarangapani, Erik Nelson, Ben Browne, Carl Wordelman, Tillmann Kubis, and Gerhard Klimeck (2017): NEMO5: Realistic and Efficient NEGF Simulations of GaN Light-Emitting Diodes, SPIE, Proceedings, Physics and Simulation of Optoelectronic Devices XXV, Vol 10098, presented at SPIE OPTO, San Francisco, California, U.S.A.

2016

Hesameddin Ilatikhameneh, Tarek A. Ameen, Gerhard Klimeck, and Rajib Rahman (2016): Universal Behavior of Atomistic Strain in Self-Assembled Quantum Dots, IEEE Journal of Quantum Electronics, Institute of Electrical and Electronics Engineers (IEEE), Vol 52, Num 7, pp1--8
James Charles, Prasad Sarangapani, Roksana Golizadeh-Mojarad, Robert Andrawis, Daniel Lemus, Xinchen Guo, Daniel Mejia, James E. Fonseca, Michael Povolotskyi, Tillmann Kubis, and Gerhard Klimeck (2016): Incoherent Transport in NEMO5: Realistic and Efficient Scattering on Phonons, Journal of Computational Electronics, Springer Nature, Vol 15, Num 4, pp1123–1129
Yu Wang, Archana Tankasala, Lloyd C L Hollenberg, Gerhard Klimeck, Michelle Y Simmons, and Rajib Rahman (2016): Highly Tunable Exchange in Donor Qubits in Silicon, npj Quantum Information, Nature Publishing Group, Vol 2, pp16008

2015

Bozidar Novakovic, and Gerhard Klimeck (2015): Atomistic Quantum Transport Approach to Time-Resolved Device Simulations, Institute of Electrical & Electronics Engineers (IEEE), 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp8-11, Washington, D.C., U.S.A.
Fan W. Chen, Luis A. Jauregui, Yaohua Tan, Michael Manfra, Gerhard Klimeck, Yong P. Chen, and Tillmann Kubis (2015): In-Surface Confinement of Topological Insulator Nanowire Surface States, Appl. Phys. Lett., AIP Publishing, Vol 107, Num 12, pp121605
Mehdi Salmani-Jelodar, Saumitra R. Mehrotra, Hesameddin Ilatikhameneh, and Gerhard Klimeck (2015): Design Guidelines for Sub-12 Nm Nanowire MOSFETs, IEEE Transactions on Nanotechnology, Institute of Electrical & Electronics Engineers (IEEE), Vol 14, Num 2, pp210--213
Parijat Sengupta, Tillmann Kubis, Yaohua Tan, and Gerhard Klimeck (2015): Proximity Induced Ferromagnetism, Superconductivity, and Finite-Size Effects on the Surface States of Topological Insulator Nanostructures, J. Appl. Phys., AIP Publishing, Vol 117, Num 4, pp044304
Ravi Pramod Vedula, Saumitra Mehrotra, Tillmann Kubis, Michael Povolotskyi, Gerhard Klimeck, and Alejandro Strachan (2015): Optimal Ge/SiGe Nanofin Geometries for Hole Mobility Enhancement: Technology Limit from Atomic Simulations, J. Appl. Phys., AIP Publishing, Vol 117, Num 17, pp174312
Yaohua P. Tan, Michael Povolotskyi, Tillmann Kubis, Timothy B. Boykin, and Gerhard Klimeck (2015): Tight-Binding Analysis of Si and GaAs Ultrathin Bodies with Subatomic Wave-Function Resolution, Phys. Rev. B, American Physical Society (APS), Vol 92, Num 8, pp085301

2014

Ganesh Hegde, Michael Povolotskyi, Tillmann Kubis, Timothy Boykin, and Gerhard Klimeck (2014): An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation, J. Appl. Phys., AIP Publishing, Vol 115, Num 12, pp123703
M. Salmani-Jelodar, S. Kim, K. Ng, and G. Klimeck (2014): Transistor Roadmap Projection Using Predictive Full-Band Atomistic Modeling, Appl. Phys. Lett., AIP Publishing, Vol 105, Num 8, pp083508
Pengyu Long, Michael Povolotskyi, Bozidar Novakovic, Tillmann Kubis, Gerhard Klimeck, and Mark J. W. Rodwell (2014): Design and Simulation of Two-Dimensional Superlattice Steep Transistors, IEEE Electron Device Lett., Institute of Electrical & Electronics Engineers (IEEE), Vol 35, Num 12, pp1212--1214
Yu He, Yu Wang, Gerhard Klimeck, and Tillmann Kubis (2014): Non-Equilibrium Green's Functions Method: Non-Trivial and Disordered Leads, Appl. Phys. Lett., AIP Publishing, Vol 105, Num 21, pp213502

2013

J. E. Fonseca, T. Kubis, M. Povolotskyi, B. Novakovic, A. Ajoy, G. Hegde, H. Ilatikhameneh, Z. Jiang, P. Sengupta, Y. Tan, and G. Klimeck (2013): Efficient and Realistic Device Modeling from Atomic Detail to the Nanoscale, J Comput Electron, Springer Science + Business Media, Vol 12, Num 4, pp592--600
Lang Zeng, Yu He, Michael Povolotskyi, XiaoYan Liu, Gerhard Klimeck, and Tillmann Kubis (2013): Low Rank Approximation Method for Efficient Green's Function Calculation of Dissipative Quantum Transport, J. Appl. Phys., AIP Publishing, Vol 113, Num 21, pp213707
Parijat Sengupta, Tillmann Kubis, Yaohua Tan, Michael Povolotskyi, and Gerhard Klimeck (2013): Design Principles for HgTe Based Topological Insulator Devices, J. Appl. Phys., AIP Publishing, Vol 114, Num 4, pp043702
Yaohua Tan, Michael Povolotskyi, Tillmann Kubis, Yu He, Zhengping Jiang, Gerhard Klimeck, and Timothy B. Boykin (2013): Empirical Tight Binding Parameters for GaAs and MgO with Explicit Basis Through DFT Mapping, J Comput Electron, Springer Science + Business Media, Vol 12, Num 1, pp56--60

2017

Gerhard Klimeck (2017): Leading Future Electronics into The Nano Regime Using Quantum Atomistic Simulations in NEMO5, 2017 Blue Waters Annual Report, pp144-145

2016

Gerhard Klimeck (2016): Nanoscale Electronic Devices with NEMO5, 2016 Blue Waters Annual Report, pp124-126

2015

Gerhard Klimeck (2015): Atomistic Modeling of Future Nanoscale Electronic Devices with NEMO5, 2015 Blue Waters Annual Report, pp92-93

James Charles: Non-Local Scattering with a New Recursive Nonequilibrium Green’s Function Method


International Workshop on Computational Nanotechnology; Windermere, England, U.K., Jun 7, 2017

Xinchen Guo: Nanoelectronic Modeling on Blue Waters with NEMO5


Blue Waters Symposium 2017, May 17, 2017

Jim Fonseca: Nanoelectronics Modeling on Blue Waters with NEMO5


Blue Waters Symposium 2016, Jun 14, 2016

Fan Chen, M. J. Manfra, G. Klimeck, and T. C. Kubis: NEMO5: Why must we treat topological insulator nanowires atomically?


International Workshop on Computational Electronics (IWCE 2015); West Lafayette, Indiana, U.S.A., Sep 2, 2015
Archana Tankasala, Y. Wang, J. Bocquel, B. Voison, M. Usman, S. Rogge, M. Simmons, L. Hollenberg, R. Rahman, and G. Klimeck: Modeling Exchange Interaction in Bulk and Sub-Surface Donor Pairs In Silicon for Two-Qubit Gates
Army Research Office Quantum Computing Program Review 2015; San Diego, California, U.S.A., Aug 10, 2015

Jim Fonseca: Accelerating Nano-scale Transistor Innovation


Blue Waters Symposium 2014, May 14, 2014
Mehdi Salmani-Jelodar, J. D. Bermeol, S. Kim, and G. Klimeck: ITRS Tool on NanoHUB
2014 NanoHUB User Conference; Phoenix, Arizona, U.S.A., Apr 10, 2014

Nano is now


Oct 16, 2013

Soon our devices will depend on transistors that are a few atoms wide. A tool developed by the Nanoelectronic Modeling Group will help design them. If you think nano-devices are the stuff of science fiction or the distant future, think again. “If you have an iPhone or other smartphone, you already have nanotechnology in your pocket,” says Gerhard Klimeck, director of the Network for Computational Nanotechnology and professor of electrical and computer engineering at Purdue University.


Sources:
 

From massive supercomputers come tiniest transistors


Mar 3, 2015

A relentless global effort to shrink transistors has made computers continually faster, cheaper and smaller over the last 40 years. This effort has enabled chipmakers to double the number of transistors on a chip roughly every 18 months--a trend referred to as Moore's Law. In the process, the U.S. semiconductor industry has become one of the nation's largest export industries, valued at more than $65 billion a year. ... At this nanoscale, new phenomena take precedence over those that hold sway in the macro-world. Quantum effects such as tunneling and atomistic disorder dominate the characteristics of these nanoscale devices. Fundamental questions about how various materials and configurations behave at this scale need to be answered. "Further improvements in these dimensions will come only through detailed and optimized device design and better integration," said Gerhard Klimeck, a professor of electrical and computer engineering at Purdue University and director of the Network for Computational Nanotechnology there.


Sources: