Skip to Content

Sean Seyler

Blue Waters Graduate Fellow: Sean Seyler


Dec 7, 2016

Proteins, such as membrane transporters or enzymes, are much like nanomachines that undergo structural changes—conformational transitions—between multiple states in order to perform chemical or mechanical work. These transitions are rare events that, due to the equilibrium sampling problem, are difficult to reproduce in equilibrium molecular dynamics (MD) simulation. The paradigm for studying these processes is the so-called structure-function connection; in principle, one should be able to infer a protein's function (its dynamical structural changes) given information about its structure (its 3D "shape" and amino acid sequence). Given the enormous computational difficulty of simulating highly complex, heterogeneous biomacromolecules on sufficiently long time scale, the majority of my research is focused on the development of computational methods and software tools that can help to more effectively sample and quantify protein conformational motions and transitions.


Sources:
 

Ten PhD students from across the country selected as Blue Waters Graduate Fellows


Apr 19, 2016

Ten outstanding computational science PhD students from across the country have been selected to receive Blue Waters Graduate Fellowships for 2016-2017. The fellowship program, now in its third year, provides substantial support and the opportunity to leverage the petascale power of National Center for Supercomputing Applications (NCSA) at the University of Illinois’s Blue Waters supercomputer to advance their research. The awards are made to outstanding PhD graduate students who have decided to incorporate high performance computing and data analysis into their research.


Sources: