Paul R. Woodward

University of Minnesota

Stellar Astronomy and Astrophysics

NSF awards time on Blue Waters to seven new projects

The National Science Foundation (NSF) has awarded 14 new allocations on the Blue Waters petascale supercomputer at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign. Seven of the awards are for new projects..

4 applications sustain 1 petaflop on Blue Waters

Four large-scale science applications (VPIC, PPM, QMCPACK and SPECFEM3DGLOBE) have sustained performance of 1 petaflop or more on the Blue Waters supercomputer, and the Weather Research & Forecasting (WRF) run on Blue Waters is the largest WRF simulation ever documented. These applications are part of the NCSA Blue Waters Sustained Petascale Performance (SPP) suite and represent valid scientific workloads.VPICVPIC integrates the relativistic Maxwell-Boltzmann system in a linear background medium for multiple particle species, in time with an explicit-implicit mixture of velocity Verlet, leapfrog, Boris rotation and exponential differencing based on a reversible phase-space volume conserving second order Trotter factorization. The Petascale Computing Resource Allocation (PRAC) team led by Homayoun Karimabadi (University of California-San Diego) is using VPIC in for kinetic simulations of magnetic reconnection of high temperature plasmas (H+ and e-)..

Simulations of Hydrogen Ingestion Flashes in Giant Stars

In this video from the PASC16 conference, Paul Woodward from the University of Minnesota presents: Simulations of Hydrogen Ingestion Flashes in Giant Stars..

4 more research groups using Blue Waters Early Science System

Four additional research teams have begun using the first phase of the Blue Waters sustained-petascale supercomputer to tackle challenging problems in science and engineering. They join six research groups that began using the system in March. The Blue Waters Early Science System, which is made up of 48 Cray XE6 cabinets, represents about 15 percent of the total Blue Waters computational system and is currently the most powerful computing resource available through the National Science Foundation..