Eliu Huerta Escudero
Confluence of Numerical Relativity and Physics-Inspired AI for Multi-Messenger Astrophysics Discovery with the Blue Waters Supercomputer
(bbel)Jan 2021 - Dec 2021
Numerical simulations of neutron stars and black holes 2
(bbbx)Jan 2020 - Dec 2020
Convergence of numerical relativity, deep learning at scale, and large scale computing for Multi-Messenger Astrophysics
(baws)Jan 2019 - Dec 2019
Large scale gravitational wave searches in NANOGrav Data
(bavi)Aug 2018 - Mar 2019
Deep Learning for Multimessenger Astrophysics
(baui)Jun 2018 - Jun 2018
Fusing Numerical Relativity and Deep Learning for Multimessenger Astrophysics
(bauj)Jun 2018 - Jun 2018
Simulation, modeling and searches of multi-messenger sources with the Blue Waters Supercomputer
(baue)May 2018 - Mar 2019
Numerical Relativity Simulations of Compact Binary Coalescence in support of NCSA’s LIGO commitment
(bapa)Dec 2017 - Nov 2018
Rapid Award to assist LIGO in the discovery of new Gravitational Wave Transients
(banw)Aug 2017 - Aug 2018
Simulations of Compact Object Mergers in support of NCSA’s LIGO commitment
(bakq)May 2017 - May 2018
Exploring the frontiers of the nanoHertz gravitational wave spectrum with pulsar timing arrays
(bais)Jan 2017 - Jun 2017
Accelerating the detection of gravitational waves with GPUs
(bahi)Oct 2016 - Oct 2016
Numerical Relativity simulations in the advanced detector era
(babx)Mar 2016 - Mar 2017
2020
2019
2018
2017
2016
2019
2018
2017
Eliu Huerta Escudero: Deep Learning at Scale: A Paradigm Shift for Multi-Messenger Astrophysics
Blue Waters Symposium 2019, Jun 4, 2019
Roland Haas: Multimessenger Astronomy at the University of Illinois
Blue Waters Symposium 2018, Jun 5, 2018
Deep Learning at scale for the construction of galaxy catalogs
Sep 15, 2019
In a new study, researchers from NCSA and Argonne have developed a novel combination of deep learning methods to provide a highly accurate approach to classifying hundreds of millions of unlabeled galaxies.
Sources:
Scientists Leverage HPC and AI to Wrangle the ‘Galaxy Zoo’
Jul 8, 2019
Now, researchers from the National Center for Supercomputing Applications (NCSA) and the Argonne Leadership Computing Facility (ALCF) are using AI and supercomputing to leverage that user-generated data and accelerate progress on the Galaxy Zoo.
Sources:
What’s New in HPC Research: October (Part 2)
Oct 15, 2018
In this paper, written by a team from the National Center for Supercomputing Applications and Rutgers University, the researchers argue that the (traditionally separate) HPC and HTC infrastructures must be integrated and unified.
Sources:
Using Ai to detect Gravitational Waves with the Blue Waters Supercomputer
Apr 14, 2018
NCSA Gravity Group researchers, Daniel George, Eliu Huerta and Hongyu Shen leveraged NCSA resources from its Innovative Systems Laboratory, Einstein Toolkit and NCSA’s Blue Waters supercomputer. Also critical to this research were the GPUs (Tesla P100 and DGX-1) provided by NVIDIA, which enabled an accelerated training of neural networks. Wolfram Research also played an important role, as the Wolfram Language was used in creating this framework for deep learning.
Sources:
- https://insidehpc.com/2018/04/using-ai-detect-gravitational-waves-blue-waters-supercomputer/
- https://www.nextplatform.com/2018/04/16/gpus-mine-astronomical-datasets-for-golden-insight-nuggets/
Scientists Pioneer Use of Deep Learning for Real-Time Gravitational Wave Discovery
Jan 25, 2018
Scientists at NCSA have pioneered the use of GPU-accelerated deep learning for rapid detection and characterization of gravitational waves. This new approach will enable astronomers to study gravitational waves using minimal computational resources, reducing time to discovery and increasing the scientific reach of gravitational wave astrophysics. This innovative research was recently published in Physics Letters B.
Sources:
- https://www.hpcwire.com/off-the-wire/scientists-pioneer-use-deep-learning-real-time-gravitational-wave-discovery/
- http://markets.businessinsider.com/news/stocks/Scientists-Pioneer-Use-of-Deep-Learning-for-Real-Time-Gravitational-Wave-Discovery-1014020370
- https://www.prnewswire.com/news-releases/scientists-pioneer-use-of-deep-learning-for-real-time-gravitational-wave-discovery-300588346.html
- https://insidehpc.com/2018/01/video-deep-learning-real-time-gravitational-wave-discovery/
- https://www.laboratoryequipment.com/news/2018/01/scientists-pioneer-use-deep-learning-real-time-gravitational-wave-discovery
- https://phys.org/news/2018-01-scientists-deep-real-time-gravitational-discovery.html
- https://www.space.com/39637-artificial-intelligence-search-gravitational-waves.html
- http://www.spacedaily.com/reports/Deep_Learning_Pioneered_for_Real_Time_Gravitational_Wave_Discovery_999.html
- http://www.dailygalaxy.com/my_weblog/2018/01/einsteins-toolkit-reveals-as-yet-undetected-spacetime-events.html
- https://www.nextplatform.com/2018/02/27/deep-learning-hpc-systems-astronomy/
Physicists Catch Fourth Gravitational Wave: GW170814
Sep 28, 2017
The GW170814 signal was detected on August 14, 2017, at 10:30:43 a.m. UTC using the two Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors located in Livingston, Louisiana, and Hanford, Washington, and the Virgo detector, located near Pisa, Italy. It is the fourth announced detection of a binary black-hole system (previously confirmed detections – GW150914, GW151226, and GW170104) and the first significant gravitational-wave signal recorded by the Virgo detector. The detection is especially important because it highlights the scientific potential of a three-detector network of gravitational-wave detectors. “This is just the beginning of observations with the network enabled by Virgo and LIGO working together,” said MIT senior research scientist Dr. David Shoemaker, spokesperson of the LIGO Scientific Collaboration.
Sources:
Three-detector observation of gravitational waves
Sep 27, 2017
The observation of gravitational waves is gradually becoming routine. Once again, researchers have recorded the ripples of space-time predicted by Albert Einstein a hundred years ago. But this time, next to the two US Advanced Ligo observatories, which detected all three gravitational waves recorded so far, the Italian Advanced Virgo detector was also involved. On August 14, at 12:30:43 pm CEST, all three detectors observed a gravitational wave signal, known as GW170814, generated by two coalescing black holes. Researchers at the Max Planck Institute for Gravitational Physics at the Hanover and Potsdam sites were delighted with the results. “Gravitational wave astronomy is rapidly advancing. With a third large detector, we can even more accurately determine the position and distance of the gravitational wave sources“, says Alessandra Buonanno, and her two co-directors Bruce Allen and Karsten Danzmann.
Sources:
European detector spots its first gravitational wave
Sep 27, 2017
Physicists have announced their fourth-ever detection of gravitational waves, and the first such discovery made together by observatories in Europe and the United States. The Virgo observatory near Pisa, Italy, has been hunting for ripples in the fabric of space-time since 2007. But it was being upgraded at the time of the historic first detection of gravitational waves by the twin laboratories of Virgo’s US cousin, the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), and was also out of action for two subsequent sightings. Virgo rejoined the hunt this year on 1 August, following a 5-year, €23-million (US$27-million) upgrade. And on 14 August, both it and LIGO picked up the gravitational vibrations emanating from a pair of rotating black holes, with masses of 31 and 25 times that of the Sun, as they merged together, physicists announced on 27 September at a press conference in Turin, Italy. The collision happened around 540 million parsecs (1.8 billion light years) away.
Sources:
A fourth gravitational wave has been detected — and we've pinpointed its location better than ever before
Sep 27, 2017
Astronomers say they have detected another set of gravitational waves — ripples in the fabric of space and time traveling throughout the Universe. It’s the fourth time this phenomenon has been measured by the scientists at LIGO, or the Laser Interferometer Gravitational-Wave Observatory. The same group made history by detecting the first wave signals early last year. While such detections seem to be routine now, this latest discovery is unique since it was also picked up by a separate non-LIGO observatory. LIGO, which is funded by the National Science Foundation, has two observatories in Washington and Louisiana dedicated to measuring gravitational waves. But in Italy, there’s another European-run observatory called Virgo, which is virtually the same as the LIGO facilities. On August 14th, Virgo detected its first gravitational wave signal — along with the LIGO observatories — from a pair of black holes violently merging over a billion light-years away. All of LIGO’s previous detections have stemmed from merging black holes, too, but this is the first time a merger was seen by all three observatories at once. A paper about the latest discovery has been accepted for publication in the journal Physical Review Letters.
Sources:
Trio of detectors tracks gravitational waves to their home
Sep 27, 2017
The gravitational wave paparazzi have tracked down the cosmic neighborhood of two merging black holes. Scientists pinpointed the region in the sky where the two black holes violently melded and kicked up swirls of the spacetime ripples, locating their stomping grounds more precisely than ever before. Researchers from LIGO — the Advanced Laser Interferometer Gravitational-Wave Observatory — and its sister experiment, Advanced Virgo, spotted the ripples on August 14. The team announced the finding September 27 at a news conference at a meeting of the G7 science ministers in Turin, Italy, and in a paper accepted in Physical Review Letters.
Sources:
Gravitational wave from black hole collision 1.8 billion light-years away sensed in US and Italy
Sep 27, 2017
When two black holes merged 1.8 billion light-years away, their violent union sent shock waves through space and time. On Aug. 14, three precisely tuned machines sensed the cosmic fallout, a ripple known as a gravitational wave. August's event marked the fourth time that astronomers have observed black hole collisions. An international team of scientists announced the discovery on Wednesday from Turin, Italy, at a meeting of the G7 science ministers. The science of hunting gravitational waves is old on paper and young in practice. Albert Einstein, through his General Theory of Relativity, predicted in 1916 that the waves should exist. It would remain a prediction for 98 years, until the LIGO Scientific Collaboration detected the first gravitational wave in September 2015.
Sources:
- https://www.mysanantonio.com/news/local/article/Gravitational-wave-from-black-hole-collision-1-8-12236332.php
- http://nationalpost.com/news/world/gravitational-wave-from-black-hole-collision-1-8-billion-light-years-away-sensed-in-u-s-and-italy
NCSA Grants $2.6M in Blue Waters Awards to Illinois Researchers
Jul 6, 2017
The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign has awarded 3,697,000 node hours (NH) of time on the Blue Waters supercomputer to Illinois researchers from Spring 2017 proposal submissions. The combined value of these awards is over $2.6 million dollars, and through the life of the Blue Waters program, NCSA has awarded over 43 million node hours to UI researchers—a value of nearly $27 million. Some of the time allocated for Blue Waters will go to projects that focus on HIV research, Laser Interferometer Gravitational-Wave Observatory (LIGO) simulations, genomics and global warming research.
Sources:
LIGO Detects Gravitational Waves for Third Time
Jun 6, 2017
A new window in astronomy has been firmly opened with a third detection of gravitational waves. The Laser Interferometer Gravitational-wave Observatory (LIGO) has made yet another detection of ripples in space and time, demonstrating that the detection of gravitational waves may soon become commonplace. As was the case with the first two detections, the waves were generated when two black holes collided to form a larger black hole. The newfound black hole, formed by the merger, has a mass about 49 times that of our sun. This fills in a gap between the masses of the two merged black holes detected previously by LIGO, with solar masses of 62 (first detection) and 21 (second detection).
Sources:
Leggo my LIGO
Mar 2, 2016
After LIGO detected gravitational waves a few months ago (detected in September 2015 but announced in February 2016), LIGO and gravitational waves became almost household words. However, did you know that the revolutionary observations couldn’t have been made without the help of the U of I? ... In recognition of his work in getting NSF funding to build these supercomputers and the benefits thereof, Professor Smarr was awarded the Golden Goose award by the Association of American Universities back in February of 2014. The award is presented once a year to honor federally-funded research which has lead to major breakthroughs in science. Any researcher who has produced something within the previous 60 years is eligible. The fact that Professor Smarr received this award is a testament to the importance of the NCSA and its capabilities.
Sources:
Gravitational waves detected 100 years after Einstein’s prediction
Feb 11, 2016
For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity and opens an unprecedented new window onto the cosmos. ... The gravitational waves were detected on Sept. 14, 2015, at 5:51 a.m. Eastern Daylight Time (9:51 UTC) by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, La., and Hanford, Wash. The LIGO Observatories are funded by the National Science Foundation, and were conceived, built, and are operated by Caltech and Massachusetts Institute of Technology. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.
Sources:
Discovery confirms Einstein prediction; NCSA played role
Feb 11, 2016
A billion light years from Earth, two dense objects known as black holes collide at enormous speed, sending giant ripples through the fabric of space-time. Albert Einstein predicted such an event a century ago as part of his theory of relativity, and scientists have been searching for those ripples, known as gravitational waves, ever since. The announcement of their discovery sent waves of excitement around the globe Thursday, including at the National Center for Supercomputing Applications in Urbana, created 30 years ago to help scientists solve enormous computational puzzles like this one.
Sources: