Skip to Content

Self-Assembly and Phase Behavior of Surface-Tethered Peptide/Polymer-Brush Conjugates

Scott Carmichael, University of California, Santa Barbara

Usage Details

Scott Carmichael

The latest generation of rationally designed and targeted drug therapies are currently revolutionizing medicine. There has been recent success in utilizing self-assembled peptide micelles as targeted drug delivery vehicles. These novel agents offer the ability to safely transport and deliver drugs to a disease site, and maintain long circulation times in the bloodstream. A major challenge for designing peptide based drug delivery systems is that the peptide domains can assemble to form so-called β-sheet structures that drive a spherical micelle into a cylindrical form, the latter which is less suitable for drug delivery and storage. However, the addition of polymer brushes to the midpoints of the peptides has recently been shown to hinder the formation of β-sheet structures and promote spherical micellization.

In our work, we will use molecular dynamics simulations to elucidate the structural and thermodynamic behavior of such polymer brush conjugated peptide micelle systems. In particular we will focus on the effects of varying the polymer-brush length and peptide density to map out the structures that are formed by the complex interplay of different driving forces universally at play in such systems. An understanding of the structural effects of polymer-brush conjugation is crucial to improving drug targeting propensities and micellar stability.