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Statistics Review

• Simple regression 

• Goal: Find m,b 

• With data set  

• Let the error be 

•
 

• Minimize  with respect to  and . 
• In practice we consider more general 

y =  𝑚 ∙ 𝑥 + 𝑏 

{(𝑥𝑖, 𝑦𝑖)} 
𝑖=1,..,𝑛

𝑅 =  
𝑛

∑
𝑖=1

[(𝑦𝑖 − (𝑚 ∙ 𝑥𝑖 + 𝑏)]2

𝑅 𝑚 𝑏
𝑦 = 𝑓(𝑥)
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Statistics Review

• Regressions with parameterized sets of functions. e.g. 

•  (quadratic) 

•  (polynomial) 

• (exponential) 

•  (logistic)

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐
𝑦 = ∑ 𝑎𝑖𝑥𝑖

𝑦 = 𝑁𝑒𝑟𝑥

𝑦 =
1

1 + 𝑒−(𝑎+𝑏𝑥)
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Statistics Review

• Rational models of degree ’n’ 
• “degrees of freedom”  

- models capacity
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Deep Learning, Goodfellow et. al., MIT Press, http://www.deeplearningbook.org, 2016
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Just a Bad Fit Bad Generalization

http://www.deeplearningbook.org/
http://www.deeplearningbook.org/


Gradient Decent

• Searching for minimum of 

•  

•  

•  and  is a sum over  

• Update parameters 

•  

•  Learning Rate

𝑅 =  
𝑛

∑
𝑖=1

[(𝑦𝑖 − 𝑓𝜃𝑡
(𝑥𝑖)]

2

𝛻𝑅 = ⟨𝑅𝜃0
, 𝑅𝜃2

, …, 𝑅𝜃𝑛⟩
𝑅 𝛻𝑅  𝑖

𝑅(→
𝜃 𝑡+1) = 𝑅(→

𝜃 𝑡 + 𝛾𝛻𝑅)
𝛾 :
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Stochastic Gradient Decent

• Single training example,  , Sum over only one training example 

•  

•  

•  Learning Rate 
• Choose next , (Shuffled training set) 
• SGD with mini batches 
• Many training example,  , Sum over many training example 

• Batch Size or Mini Batch Size (This gets ambiguous with distributed training) 
• SGD often outperforms traditional GD, want small batches. 

• https://arxiv.org/abs/1609.04836, On Large-Batch Training … Sharp Minima  
• https://arxiv.org/abs/1711.04325, Extremely Large ... in 15 Minutes

(𝑥𝑖, 𝑦𝑖)
𝛻𝑅(𝑥𝑖,𝑦𝑖) = ⟨𝑅𝜃0

, 𝑅𝜃2
, …, 𝑅𝜃𝑛⟩(𝑥𝑖,𝑦𝑖)

𝑅(𝑥𝑖,𝑦𝑖)(→
𝜃 𝑡+1) = 𝑅(𝑥𝑖,𝑦𝑖)(→

𝜃 𝑡 + 𝛾𝛻𝑅(𝑥𝑖,𝑦𝑖))
𝛾 :

(𝑥𝑖+1, 𝑦𝑖+1)

(𝑥𝑖, 𝑦𝑖)
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Common ML Models and Datasets

• MNIST 
• ImageNet 
• Fully connected Neural Network 
• Deep Convolutional Neural Network
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Image

ResNet (34)

𝑋

𝑍

𝑇 → 𝑌

•
•
•

𝑍𝑀 =  𝜎(𝛼0𝑚 + 𝛼𝑚𝑋)
𝑇𝐾 =  𝛽0𝑘 + 𝛽𝑘𝑍
𝑓𝐾(𝑋 ) =  𝑔𝑘(𝑇 )



• Convolution 
• Fully connected layers (traditional “Neural Networks”) 
• Max Pooling 
• Concatenation 
• RNN 
• GRU 
• Transformers

LSTM Cell

Modern ML Taxonomy
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https://setosa.io/ev/image-kernels/

Transformer Architecture  
(https://arxiv.org/abs/1706.03762)



Faux Model Example
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Image Input Classification 
Output



Distributed Training, Data Distributed
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Distributed Training, Data Distributed
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Distributed Training, Data Distributed
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Effects of Batch Size on Training, Bad “Generalization”

• Training on MNIST dataset 
• Model is a NN with 2 FC layers  
• Orange: Batchsize 64 

Blue:      Batchsize 256 
Purple:   Batchsize 1024 

• There are ways to mitigate this 
and scale your model training. 
Ask me offline: saxton@illinos.edu 
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https://medium.com/mini-distill/effect-of-batch-size-on-training-dynamics-21c14f7a716e

EpochsEpochs

Epochs Epochs
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What can we do?

• Regularization! 
• Perturb data 
• Variable learning rate 
• Batch Normalization 
• l1, l2 normalization 
• Dropout 
• Other novel techniques 

• No generalized theory that will guarantee what works for you 
• Reach out to Aaron Saxton saxton@illinois.edu 
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[Deep Learning] Batch Normalization  
(https://medium.com/@tsengyangyu/batch-normalization-58aac99ee26)

mailto:saxton@illinois.edu
https://medium.com/@tsengyangyu/batch-normalization-58aac99ee26


Practical Implementations: Cray ML Plugin

• Cray Optimized MPI Tensor serialization 
• Runs concurrently with standard Tesnorflow
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Build Data, 
Model, and 
Training 
Somewhere 
Here
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Practical Implementations: A case study in unsupervised ML on BW 

• Unsupervised timeseries classification 
• Novel combination of LSTM, Auto Encoder, K-Means 

• Hosting 3TB of time series data in memory 
• Distributed, Indexed, and Queryable: MongoDB 

• Heterogenous Jobs using XE nodes to host MongoDB cluster XK nodes to run Tensorflow 
• ~3000 XE nodes 
• 64 XK nodes 

• Training unsupervised models on data samples that range from ~100MB to ~10GB 

• Diminishing return on time to solution at 64 XK nodes 
• Personal observation that most vanilla models give fastest time to solution between with 

batch size between 16 and 64. 
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Questions?

mailto:saxton@illinois.edu

