
LLNL-PRES-806064
This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

github.com/spack/spack

Spack:	A	Package	Manager	for	HPC
Todd	Gamblin	

Advanced	Technology	Office,	Livermore	Computing	
Lawrence	Livermore	National	Laboratory

NCSA Blue Waters Webinar
October 30, 2019

LLNL-PRES-806064
github.com/spack/spack 2

Software	complexity	in	HPC	is	growing

Ascent: Lightweight, in-situ, many-core visualization and analysis

LLNL-PRES-806064
github.com/spack/spack 3

MFEM: Arbitrary high-order finite elements

Ascent: Lightweight, in-situ, many-core visualization and analysis

Software complexity in HPC is growing

LLNL-PRES-806064
github.com/spack/spack 4

LBANN: Artificial Neural Nets for HPC
MFEM: Arbitrary high-order finite elements

Software complexity in HPC is growing

Ascent: Lightweight, in-situ, many-core visualization and analysis

LLNL-PRES-806064
github.com/spack/spack 5

The	complexity	of	the	exascale	ecosystem	threatens	productivity.

▪ Every	application	has	its	own	stack	of	dependencies.
▪ Developers,	users,	and	facilities	dedicate	(many)	FTEs	to	building	&	porting.
▪ Often	trade	reuse	and	usability	for	performance.

80+ software packagesx 5+ target architectures/platforms
Xeon Power KNL

NVIDIA ARM Laptops?
x

Up to 7 compilers
Intel GCC Clang XL

PGI Cray NAG
x

= up to 1,260,000 combinations!

15+ applications

x
10+ Programming Models

OpenMPI MPICH MVAPICH OpenMP CUDA
OpenACC Dharma Legion RAJA Kokkos

2-3 versions of each package +
external dependencies

x

We must make it easier to rely on others’ software!

LLNL-PRES-806064
github.com/spack/spack 6

How	to	install	software	on	a	Mac	laptop,	circa	2013

LLNL-PRES-806064
github.com/spack/spack 7

How	to	install	software	on	a	supercomputer

1. Download all
16 tarballs you
need

2. Start building!

LLNL-PRES-806064
github.com/spack/spack 7

How	to	install	software	on	a	supercomputer

c
o
n
f
i
g
u
r
e

m
a
k
e

F
i
g
h
t

w
i
t
h

c
o
m
p
i
l
e
r
.
.
.

m
a
k
e

T
w
e
a
k

c
o
n
f
i
g
u
r
e

a
r
g
s
.
.
.

m
a
k
e

i
n
s
t
a
l
l

m
a
k
e

c
o
n
f
i
g
u
r
e

c
o
n
f
i
g
u
r
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

c
m
a
k
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

1. Download all
16 tarballs you
need

2. Start building!

LLNL-PRES-806064
github.com/spack/spack 7

How	to	install	software	on	a	supercomputer

c
o
n
f
i
g
u
r
e

m
a
k
e

F
i
g
h
t

w
i
t
h

c
o
m
p
i
l
e
r
.
.
.

m
a
k
e

T
w
e
a
k

c
o
n
f
i
g
u
r
e

a
r
g
s
.
.
.

m
a
k
e

i
n
s
t
a
l
l

m
a
k
e

c
o
n
f
i
g
u
r
e

c
o
n
f
i
g
u
r
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

c
m
a
k
e

m
a
k
e

m
a
k
e

i
n
s
t
a
l
l

1. Download all
16 tarballs you
need

2. Start building!

3. Run code
4. Segfault!?
5. Start over…

LLNL-PRES-806064
github.com/spack/spack 8

▪ Most	supercomputers	deploy	some	form	of	environment	modules	
— TCL	modules	(dates	back	to	1995)	and	Lmod	(from	TACC)	are	the	most	popular	

▪ Modules	don’t	handle	installation!	
— They	only	modify	your	environment	(things	like	PATH,	LD_LIBRARY_PATH,	etc.)	

▪ Someone	(likely	a	team	of	people)	has	already	installed	gcc	for	you!	
— Also,	you	can	only	`module	load`	the	things	they’ve	installed

What	about	modules?

$ gcc
-bash: gcc: command not found

$ module load gcc/7.0.1
$ gcc –dumpversion
7.0.1

LLNL-PRES-806064
github.com/spack/spack 9

▪ Containers	provide	a	great	way	to	reproduce	and	distribute	an		
already-built	software	stack	

▪ Someone	needs	to	build	the	container!	
— This	isn’t	trivial	
— Containerized	applications	still	have	hundreds	of	dependencies	

▪ Using	the	OS	package	manager	inside	a	container	is	insufficient	
— Most	binaries	are	built	unoptimized	
— Generic	binaries,	not	optimized	for	specific	architectures	

▪ HPC	containers	may	need	to	be	rebuilt	to	support	many	
different	hosts,	anyway.	
— Not	clear	that	we	can	ever	build	one	container	for	all	facilities	
— Containers	likely	won’t	solve	the	N-platforms	problem	in	HPC

What	about	containers?

We need something more flexible to build the containers

LLNL-PRES-806064
github.com/spack/spack 10

• Spack	automates	the	build	and	installation	of	scientific	software	
• Packages	are	templated,	so	that	users	can	easily	tune	for	the	host	environment	

• Ease	of	use	of	mainstream	tools,	with	flexibility	needed	for	HPC	tuning	

• Major	victories:	
• ARES	porting	time	on	a	new	platform	was	reduced	from	2	weeks	to	3	hours	
• Deployment	time	for	1,300-package	stack	on	Summit	supercomputer	reduced	from	2	
weeks	to	a	12-hour	overnight	build	

• Used	by	teams	across	ECP	to	accelerate	development

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$	git	clone	https://github.com/spack/spack	
$	spack	install	hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack	is	a	flexible	package	manager	for	HPC

LLNL-PRES-806064
github.com/spack/spack 11

People	who	want	to	use	or	distribute	software	for	HPC!	

1. End	Users	of	HPC	Software	
— Install	and	run	HPC	applications	and	tools	

2. HPC	Application	Teams	
— Manage	third-party	dependency	libraries	

3. Package	Developers	
— People	who	want	to	package	their	own	software	for	distribution	

4. User	support	teams	at	HPC	Centers	
— People	who	deploy	software	for	users	at	large	HPC	sites

Who	can	use	Spack?

LLNL-PRES-806064
github.com/spack/spack 12

Spack	is	used	worldwide!

Over 450 contributors
from labs, academia, industry

Over 3,500 software packages
Over 2,000 monthly active users (on docs site)

Plot shows users on
spack.readthedocs.io for one month

LLNL-PRES-806064
github.com/spack/spack 13

Active	Users	on	the	spack.readthedocs.io

LLNL-PRES-806064
github.com/spack/spack 14

Spack	is	being	used	on	many	of	the	top	HPC	systems

▪ Official	deployment	tool	for	the		
U.S.	Exascale	Computing	Project	

▪ 7	of	the	top	10	supercomputers	
▪ High	Energy	Physics	community	

— Fermilab,	CERN,	collaborators	
▪ Astra	(Sandia)	
▪ Fugaku	(Japanese	National	Supercomputer	Project)

Summit (ORNL), Sierra (LLNL) Edison, Cori, Perlmutter (NERSC)SuperMUC-NG (LRZ, Germany)

Fugaku coming to RIKEN in 2021
DOE/MEXT collaboration

LLNL-PRES-806064
github.com/spack/spack 15

▪ In	November	2015,	LLNL	provided	
most	of	the	contributions	to	Spack	

▪ Since	then,	we’ve	gone	from	300	to	
over	3,500	packages	

▪ Most	packages	are	from	external	
contributors!	

▪ Many	contributions	in	core,	as	well.	

▪ We	are	committed	to	sustaining	
Spack’s	open	source	ecosystem!

Contributions	to	Spack	continue	to	grow!

LLNL-PRES-806064
github.com/spack/spack 16

Spack	is	not	the	first	tool	to	automate	builds	
— Inspired	by	copious	prior	work	

1. “Functional”	Package	Managers	
— Nix	 https://nixos.org/	
— GNU	Guix	 	https://www.gnu.org/s/guix/	

2. Build-from-source	Package	Managers	
— Homebrew	 	http://brew.sh	
— MacPorts	 	https://www.macports.org	

Other	tools	in	the	HPC	Space:	

▪ Easybuild	 http://hpcugent.github.io/easybuild/	
— An	installation	tool	for	HPC	
— Focused	on	HPC	system	administrators	–	different	package	model	from	Spack	
— Relies	on	a	fixed	software	stack	–	harder	to	tweak	recipes	for	experimentation	

▪ Conda	 	https://conda.io	
— Very	popular	binary	package	manager	for	data	science	
— Not	targeted	at	HPC;	generally	unoptimized	binaries

Related	Work

LLNL-PRES-806064
github.com/spack/spack 17

Spack	Basics

LLNL-PRES-806064
github.com/spack/spack 18

▪ Each	expression	is	a	spec	for	a	particular	configuration	
— Each	clause	adds	a	constraint	to	the	spec	
— Constraints	are	optional	–	specify	only	what	you	need.	
— Customize	install	on	the	command	line!	

▪ Spec	syntax	is	recursive	
— Full	control	over	the	combinatorial	build	space

Spack	provides	a	spec	syntax	to	describe	customized	DAG	
configurations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=skylake set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

LLNL-PRES-806064
github.com/spack/spack 19

`spack	list`	shows	what	packages	are	available

$ spack list
==> 303 packages.
activeharmony cgal fish gtkplus libgd mesa openmpi py-coverage py-pycparser qt tcl
adept-utils cgm flex harfbuzz libgpg-error metis openspeedshop py-cython py-pyelftools qthreads texinfo
apex cityhash fltk hdf libjpeg-turbo Mitos openssl py-dateutil py-pygments R the_silver_searcher
arpack cleverleaf flux hdf5 libjson-c mpc otf py-epydoc py-pylint ravel thrift
asciidoc cloog fontconfig hwloc libmng mpe2 otf2 py-funcsigs py-pypar readline tk
atk cmake freetype hypre libmonitor mpfr pango py-genders py-pyparsing rose tmux
atlas cmocka gasnet icu libNBC mpibash papi py-gnuplot py-pyqt rsync tmuxinator
atop coreutils gcc icu4c libpciaccess mpich paraver py-h5py py-pyside ruby trilinos
autoconf cppcheck gdb ImageMagick libpng mpileaks paraview py-ipython py-pytables SAMRAI uncrustify
automaded cram gdk-pixbuf isl libsodium mrnet parmetis py-libxml2 py-python-daemon samtools util-linux
automake cscope geos jdk libtiff mumps parpack py-lockfile py-pytz scalasca valgrind
bear cube gflags jemalloc libtool munge patchelf py-mako py-rpy2 scorep vim
bib2xhtml curl ghostscript jpeg libunwind muster pcre py-matplotlib py-scientificpython scotch vtk
binutils czmq git judy libuuid mvapich2 pcre2 py-mock py-scikit-learn scr wget
bison damselfly glib julia libxcb nasm pdt py-mpi4py py-scipy silo wx
boost dbus glm launchmon libxml2 ncdu petsc py-mx py-setuptools snappy wxpropgrid
bowtie2 docbook-xml global lcms libxshmfence ncurses pidx py-mysqldb1 py-shiboken sparsehash xcb-proto
boxlib doxygen glog leveldb libxslt netcdf pixman py-nose py-sip spindle xerces-c
bzip2 dri2proto glpk libarchive llvm netgauge pkg-config py-numexpr py-six spot xz
cairo dtcmp gmp libcerf llvm-lld netlib-blas pmgr_collective py-numpy py-sphinx sqlite yasm
callpath dyninst gmsh libcircle lmdb netlib-lapack postgresql py-pandas py-sympy stat zeromq
cblas eigen gnuplot libdrm lmod netlib-scalapack ppl py-pbr py-tappy sundials zlib
cbtf elfutils gnutls libdwarf lua nettle protobuf py-periodictable py-twisted swig zsh
cbtf-argonavis

elpa

gperf

libedit

lwgrp

ninja py-astropy py-pexpect py-urwid szip
cbtf-krell

expat

gperftools

libelf

lwm2

ompss py-basemap py-pil py-virtualenv tar
cbtf-lanl

extrae

graphlib

libevent

matio

ompt-openmp py-biopython py-pillow py-yapf task
cereal exuberant-ctags graphviz libffi mbedtls opari2 py-blessings py-pmw python taskd
cfitsio fftw gsl libgcrypt memaxes openblas py-cffi py-pychecker qhull tau

▪ Spack	has	over	3,500	packages	now.

LLNL-PRES-806064
github.com/spack/spack 20

▪ All	the	versions	coexist!
— Multiple	versions	of

same	package	are	ok.	

▪ Packages	are	installed	to
automatically	find	correct
dependencies.

▪ Binaries	work	regardless
of	user’s	environment.

▪ Spack	also	generates
module	files.
— Don’t	have	to	use	them.

`spack	find`	shows	what	is	installed

$ spack find
==> 103 installed packages.
-- linux-rhel6-x86_64 / gcc@4.4.7 --------------------------------
ImageMagick@6.8.9-10 glib@2.42.1 libtiff@4.0.3 pango@1.36.8 qt@4.8.6
SAMRAI@3.9.1 graphlib@2.0.0 libtool@2.4.2 parmetis@4.0.3 qt@5.4.0
adept-utils@1.0 gtkplus@2.24.25 libxcb@1.11 pixman@0.32.6 ravel@1.0.0
atk@2.14.0 harfbuzz@0.9.37 libxml2@2.9.2 py-dateutil@2.4.0 readline@6.3
boost@1.55.0 hdf5@1.8.13 llvm@3.0 py-ipython@2.3.1 scotch@6.0.3
cairo@1.14.0 icu@54.1 metis@5.1.0 py-nose@1.3.4 starpu@1.1.4
callpath@1.0.2 jpeg@9a mpich@3.0.4 py-numpy@1.9.1 stat@2.1.0
dyninst@8.1.2 libdwarf@20130729 ncurses@5.9 py-pytz@2014.10 xz@5.2.0
dyninst@8.1.2 libelf@0.8.13 ocr@2015-02-16 py-setuptools@11.3.1 zlib@1.2.8
fontconfig@2.11.1 libffi@3.1 openssl@1.0.1h py-six@1.9.0
freetype@2.5.3 libmng@2.0.2 otf@1.12.5salmon python@2.7.8
gdk-pixbuf@2.31.2 libpng@1.6.16 otf2@1.4 qhull@1.0

-- linux-rhel6-x86_64 / gcc@4.8.2 --------------------------------
adept-utils@1.0.1 boost@1.55.0 cmake@5.6-special libdwarf@20130729 mpich@3.0.4
adept-utils@1.0.1 cmake@5.6 dyninst@8.1.2 libelf@0.8.13 openmpi@1.8.2

-- linux-rhel6-x86_64 / intel@14.0.2 -----------------------------
hwloc@1.9 mpich@3.0.4 starpu@1.1.4

-- linux-rhel6-x86_64 / intel@15.0.0 -----------------------------
adept-utils@1.0.1 boost@1.55.0 libdwarf@20130729 libelf@0.8.13 mpich@3.0.4

-- linux-rhel6-x86_64 / intel@15.0.1 -----------------------------
adept-utils@1.0.1 callpath@1.0.2 libdwarf@20130729 mpich@3.0.4
boost@1.55.0 hwloc@1.9 libelf@0.8.13 starpu@1.1.4

LLNL-PRES-806064
github.com/spack/spack 21

Users	can	query	the	full	dependency	configuration		
of	installed	packages.

$ spack find callpath
==> 2 installed packages.
-- linux-rhel6-x86_64 / clang@3.4 —— -- linux-rhel6-x86_64 / gcc@4.9.2 -------
callpath@1.0.2 callpath@1.0.2

Expand dependencies
with spack find -d

$ spack find -dl callpath
==> 2 installed packages.
-- linux-x86_64 / clang@3.4 ----------- -- linux-x86_64 / gcc@4.9.2 -----------
xv2clz2 callpath@1.0.2 udltshs callpath@1.0.2
ckjazss ^adept-utils@1.0.1 rfsu7fb ^adept-utils@1.0.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4
qqnuet3 ^dyninst@8.2.1 tmnnge5 ^dyninst@8.2.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4

$ spack find -dl callpath
==> 2 installed packages.
-- linux-rhel6-x86_64 / clang@3.4 ----- -- linux-rhel6-x86_64 / gcc@4.9.2 -----
xv2clz2 callpath@1.0.2 udltshs callpath@1.0.2
ckjazss ^adept-utils@1.0.1 rfsu7fb ^adept-utils@1.0.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4
qqnuet3 ^dyninst@8.2.1 tmnnge5 ^dyninst@8.2.1
3ws43m4 ^boost@1.59.0 ybet64y ^boost@1.55.0
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
g65rdud ^libdwarf@20130729 g2mxrl2 ^libdwarf@20130729
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
cj5p5fk ^libelf@0.8.13 ynpai3j ^libelf@0.8.13
ft7znm6 ^mpich@3.1.4 aa4ar6i ^mpich@3.1.4

▪ Architecture,
compiler, versions
and variants may
differ between the
builds.

LLNL-PRES-806064
github.com/spack/spack 22

Spack	manages	installed	compilers

▪ Compilers	are	automatically	detected	
— Automatic	detection	determined	by	OS	
— Linux:	PATH	
— Cray:	`module	avail`	

▪ Compilers	can	be	manually	added	
— Including	Spack-built	compilers

compilers:
- compiler:
 modules: []
 operating_system: ubuntu14
 paths:
 cc: /usr/bin/gcc/4.9.3/gcc
 cxx: /usr/bin/gcc/4.9.3/g++
 f77: /usr/bin/gcc/4.9.3/gfortran
 fc: /usr/bin/gcc/4.9.3/gfortran
 spec: gcc@4.9.3
- compiler:
 modules: []
 operating_system: ubuntu14
 paths:
 cc: /usr/bin/clang/6.0/clang
 cxx: /usr/bin/clang/6.0/clang++
 f77: null
 fc: null
 spec: clang@6.0
- compiler:
 ...

$ spack compilers
==> Available compilers
-- gcc ----------------------------------
gcc@4.2.1 gcc@4.9.3

-- clang --------------------------------
clang@6.0

compilers.yaml

LLNL-PRES-806064
github.com/spack/spack 23

Core	Spack	Concepts

LLNL-PRES-806064
github.com/spack/spack 24

▪ Traditional	binary	package	managers	
— RPM,	yum,	APT,	yast,	etc.	
— Designed	to	manage	a	single	stack.	
— Install	one	version	of	each	package	in	a	single	prefix	(/usr).	
— Seamless	upgrades	to	a	stable,	well	tested	stack	

▪ Port	systems	
— BSD	Ports,	portage,	Macports,	Homebrew,	Gentoo,	etc.	
— Minimal	support	for	builds	parameterized	by	compilers,	dependency	versions.	

▪ Virtual	Machines	and	Linux	Containers	(Docker)	
— Containers	allow	users	to	build	environments	for	different	applications.	
— Does	not	solve	the	build	problem	(someone	has	to	build	the	image)	
— Performance,	security,	and	upgrade	issues	prevent	widespread	HPC	deployment.

Most	existing	tools	do	not	support	combinatorial	versioning

LLNL-PRES-806064
github.com/spack/spack 25

▪ Each	unique	dependency	graph	is	a	unique	
configuration.	

▪ Each	configuration	installed	in	a	unique	directory.	
— Configurations	of	the	same	package	can	coexist.	

▪ Hash	of	entire	directed	acyclic	graph	(DAG)	is	
appended	to	each	prefix.		

▪ Installed	packages	automatically	find	dependencies	
— Spack	embeds	RPATHs	in	binaries.	
— No	need	to	use	modules	or	set	LD_LIBRARY_PATH	
— Things	work	the	way	you	built	them

Spack	handles	combinatorial	software	complexity.

spack/opt/
 linux-x86_64/
 gcc-4.7.2/
 mpileaks-1.1-0f54bf34cadk/
 intel-14.1/
 hdf5-1.8.15-lkf14aq3nqiz/
 bgq/
 xl-12.1/
 hdf5-1-8.16-fqb3a15abrwx/
 ...

Installation	Layout

Dependency	DAG

Hash

LLNL-PRES-806064
github.com/spack/spack 26

▪ Spack	ensures	one	configuration	of	each	library	per	DAG	
— Ensures	ABI	consistency.	
— User	does	not	need	to	know	DAG	structure;	only	the	dependency	names.	

▪ Spack	can	ensure	that	builds	use	the	same	compiler,	or	you	can	mix	
— Working	on	ensuring	ABI	compatibility	when	compilers	are	mixed.

Spack	Specs	can	constrain	versions	of	dependencies

$ spack install mpileaks %intel@12.1 ^libelf@0.8.12

LLNL-PRES-806064
github.com/spack/spack 27

Spack	handles	ABI-incompatible,	versioned	interfaces	like	MPI

$ spack install mpileaks ^mvapich@1.9 $ spack install mpileaks ^openmpi@1.4:

$ spack install mpileaks ^mpi@2

▪ mpi	is	a	virtual	dependency	

▪ Install	the	same	package	built	with	two	different	MPI	implementations:	

▪ Let	Spack	choose	MPI	implementation,	as	long	as	it	provides	MPI	2	interface:

LLNL-PRES-806064
github.com/spack/spack 28

Concretization	fills	in	missing	configuration	details	
when	the	user	is	not	explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

Abstract, normalized spec
with some dependencies.

N
orm

alize

Concretize Store

spec:
- mpileaks:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies:
 adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
 callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
 mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
 hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
 variants: {}
 version: '1.0'
- adept-utils:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies:
 boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
 mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
 hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
 variants: {}
 version: 1.0.1
- boost:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies: {}
 hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
 variants: {}
 version: 1.59.0
...

spec.yaml

Detailed provenance is stored
with the installed package

LLNL-PRES-806064
github.com/spack/spack 29

Use	`spack	spec`	to	see	the	results	of	concretization

$ spack spec mpileaks
Input spec

 mpileaks

Concretized

 mpileaks@1.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64
 ^adept-utils@1.0.1%gcc@5.3.0 arch=darwin-elcapitan-x86_64
 ^boost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph
 ~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options
 ~python+random +regex+serialization+shared+signals+singlethreaded+system
 +test+thread+timer+wave arch=darwin-elcapitan-x86_64
 ^bzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
 ^zlib@1.2.8%gcc@5.3.0 arch=darwin-elcapitan-x86_64
 ^openmpi@2.0.0%gcc@5.3.0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64
 ^hwloc@1.11.3%gcc@5.3.0 arch=darwin-elcapitan-x86_64
 ^libpciaccess@0.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64
 ^libtool@2.4.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
 ^m4@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64
 ^libsigsegv@2.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64
 ^callpath@1.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64
 ^dyninst@9.2.0%gcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64
 ^libdwarf@20160507%gcc@5.3.0 arch=darwin-elcapitan-x86_64
 ^libelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

LLNL-PRES-806064
github.com/spack/spack 30

Spack	packages	are	templates	
They	use	a	simple	Python	DSL	to	define	how	to	build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(note: same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
 """Kripke is a simple, scalable, 3D Sn deterministic particle
 transport proxy/mini app.
 """

 homepage = "https://computation.llnl.gov/projects/co-design/kripke"
 url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

 version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
 version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
 version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

 variant('mpi', default=True, description='Build with MPI.’)
 variant('openmp', default=True, description='Build with OpenMP enabled.’)

 depends_on('mpi', when='+mpi’)
 depends_on('cmake@3.0:', type='build’)

 def cmake_args(self):
 return [
 '-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
 '-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
]

 def install(self, spec, prefix):
 # Kripke does not provide install target, so we have to copy
 # things into place.
 mkdirp(prefix.bin)
 install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

LLNL-PRES-806064
github.com/spack/spack 31

Spack	builds	each	package	in	its	own	compilation	environment

Spack	
Process

Set	up	environment	

CC = spack/env/spack-cc SPACK_CC = /opt/ic-15.1/bin/icc
CXX = spack/env/spack-c++ SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/spack-f77 SPACK_F77 = /opt/ic-15.1/bin/ifort
FC = spack/env/spack-f90 SPACK_FC = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH = ... PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH = ...

do_install()

Install dep1 Install dep2 Install package…

Build		
Process

Fork

install() configure make make	install

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler	wrappers		
(spack-cc, spack-c++, spack-f77, spack-f90)

icc icpc ifort

▪ Forked	build	process	isolates	environment	for	each	build.	
Uses	compiler	wrappers	to:	
— Add	include,	lib,	and	RPATH	flags	
— Ensure	that	dependencies	are	found	automatically	
— Load	Cray	modules	(use	right	compiler/system	deps)

LLNL-PRES-806064
github.com/spack/spack 32

Some	advanced	features

LLNL-PRES-806064
github.com/spack/spack 33

Advanced	Topics	in	Packaging

▪ Spack	tries	to	automatically	configure	packages	with	information	
from	dependencies	
— But	there	are	many	special	cases.	Often	you	need	to	retrieve	details	

about	dependencies	to	configure	properly	

▪ The	goal	is	to	answer	the	following	questions	that	come	up	when	
writing	package	files:	
— How	do	I	retrieve	dependency	libraries/headers	when	configuring	my	

package?	
— How	does	spack	help	me	configure	my	build-time	environment?	

▪ We’ll	start	with	a	client	view	and	then	look	at	how	we	add	
functionality	to	packages	to	make	it	easier	for	dependents

Dependent
(client)

dependency

LLNL-PRES-806064
github.com/spack/spack 34

Accessing	Dependency	Libraries

▪ Although	Spack	performs	some	work	to	help	a	build	find	libraries,	you	may	need	to	explicitly	specify	dependency	
libraries	during	configuration	

▪ Specs	provide	a	.libs	property	which	retrieves	the	individual	library	files	provided	by	the	package	

▪ Accessing	.libs	for	a	virtual	package	will	retrieve	the	libraries	provided	by	the	chosen	implementation	

.libs.joined() expresses the list of libraries
as a single string like:
 "/…/lib1.so;/…/lib2.so"  
(e.g. for cmake)

.libs.search_flags expresses the libraries as
linker arguments like:
 "-L/…/libdir1/ -L/…/libdir2/"  
(e.g. as an argument to the compiler)

LLNL-PRES-806064
github.com/spack/spack 35

Accessing	Dependency	Libraries:	Virtuals

arpack-ng

netlib-lapack
+external-blas essl

spec[‘blas’].libsspec[‘lapack’].libs

arpack-ng

netlib-lapack
~external-blas

spec[‘lapack’].libs spec[‘blas’].libs

▪ The	client	side	code	for	accessing	“.libs”	is	the	same	regardless	of	which	
implementation	of	blas	is	used	

▪ As	a	client,	you	don’t	have	to	care	whether	‘blas’	and	‘lapack’	are	provided	by	the	
same	implementation

LLNL-PRES-806064
github.com/spack/spack 36

What’s	New?	
What’s	on	the	Road	Map?

LLNL-PRES-806064
github.com/spack/spack 37

We	are	working	to	enable	optimized	software	distribution	for	HPC

• Distribution effort required is similar to efforts like Red
Hat, Debian, Ubuntu, etc.
– Curation and vetting of software
– Packaging, building
– Wide distribution

• HPC community is not as mainstream, not as
widespread as these distributions

• HPC platform complexity poses challenges
– Many (often unique) platforms
– Many software ecosystems
– From-source distribution
– Must support Optimization, GPUs, fast networks

• Much more automation is required to practically
support our ecosystem!

LLNL-PRES-806064
github.com/spack/spack 38

Our	strategy	is	to	enable	exascale	software	distribution	
on	both	bare	metal	and	containers

– New capabilities to make HPC packaging easy and automated
• Optimized builds and package binaries that exploit the hardware
• Workflow automation for facilities, developers, and users
• Strong integration with containers as well as bare metal deployments

– Work with ECP and other partners to harden packages
• Build pipelines at facilities
• Coordination on multi-site testing
• Security integration

– Outreach to users
• Tutorials, workshops, BOFs

Container Runtimes

Spack Packaging

Bare Metal

Build / Deployment
Automation

LLNL-PRES-806064
github.com/spack/spack 39

▪ We	have	developed	a	cross-platform	library	to	detect	
and	compare	microarchitecture	metadata	
— Detects	based	on	/proc/cpuinfo	(Linux),	sysctl	(Mac)	
— Allows	comparisons	for	compatibility,	e.g.:	

▪ Key	features:	
— Know	which	compilers	support	which	chips/which	flags	
— Determine	compatibility	
— Enable	creation	and	reuse	of	optimized	binary	packages	
— Easily	query	available	architecture	features	for	portable	

build	recipes	

▪ We	will	be	extracting	this	as	a	standalone		
library	for	other	tools	&	languages	
— Hope	to	make	this	standard!

Spack	now	understands	specific	target	microarchitectures

$	spack	install	lbann	target=cascadelake	

$	spack	install	petsc	target=zen2

Specialized installationsSimple feature query

Extensive microarchitecture knowledge

skylake > broadwell  
zen2 > x86_64

LLNL-PRES-806064
github.com/spack/spack 40

▪ Allows	developers	to	bundle	Spack	configuration	with	their	repository	

▪ Can	also	be	used	to	maintain	configuration	together	with	Spack	
packages.	
— E.g.,	versioning	your	own	local	software	stack	with	consistent	compilers/

MPI	implementations	

▪ Manifest	/	Lockfile	model	pioneered	by	Bundler	is	becoming	standard	
— spack.yaml	describes	project	requirements	
— spack.lock	describes	exactly	what	versions/configurations	were	installed,	

allows	them	to	be	reproduced.

Spack	environments	enable	users	to	build	customized	stacks	
from	an	abstract	description

Simple spack.yaml file

install
build

project
spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

LLNL-PRES-806064
github.com/spack/spack 41

▪ We	recently	started	providing	base	images	on	DockerHub	with	Spack	preinstalled.	

▪ Very	easy	to	build	a	container	with	some	Spack	packages	in	it:

We	have	simplified	container	deployments	using	
Spack	Environments

spack-docker-demo/
Dockerfile
spack.yaml

Base image with Spack
in PATH

Copy in spack.yaml
Then run spack install

List of packages to install,
with constraints

Build with docker build .

Run	with	Singularity	
(or	some	other	tool)

LLNL-PRES-806064
github.com/spack/spack 42

▪ Allow	users	to	easily	express	a	huge	cross-product	of	
specs	
— All	the	packages	needed	for	a	facility	
— Generate	modules	tailored	to	the	site	
— Generate	a	directory	layout	to	browse	the	packages	

▪ Build	on	the	environments	workflow	
— Manifest	+	lockfile	
— Lockfile	enables	reproducibility	

▪ Relocatable	binaries	allow	the	same	binary	to	be	used	
in	a	stack,	regular	install,	or	container	build.	
— Difference	is	how	the	user	interacts	with	the	stack	
— Single-PATH	stack	vs.	modules.

We	have	developed	Spack	stacks:	
combinatorial	environments	for	entire	facility	deployments

LLNL-PRES-806064
github.com/spack/spack 43

▪ We	have	added	security	features	to	the		
open	source	GitLab	product.	
— Integration	with	center	identity	management	
— Integration	with	schedulers	like	SLURM,	LSF		

▪ We	are	democratizing	testing	at	Livermore	Computing	
— Users	can	run	tests	across	30+	machines	by	editing	a	file	
— Previously,	each	team	had	to	administer	own	servers	

▪ ECP	sites	are	deploying	GitLab	CI	for	users	
— All	HPC	centers	can	leverage	these	improvements	
— NNSA	labs	plan	to	deploy	common	high-side	CI	infrastructure	
— We	are	developing	new	security	policies	to	allow	external	

open	source	code	to	be	tested	safely	on	key	machines

We	have	been	heavily	involved	in	the		
ECP	CI	project.

. . .

User commits
to GitLab

GitLab test runners are now
integrated with HPC machines

LLNL-PRES-806064
github.com/spack/spack 44

▪ Builds	on	Spack	environments	
— Support	auto-generating	GitLab	CI	jobs	
— Can	run	in	a	Kube	cluster	or	on	bare	metal	runners	at	an	

HPC	site	
— Sends	progress	to	CDash	

Spack	has	added	GitLab	CI	integration	to	
automate	package	build	pipelines

LLNL-PRES-806064
github.com/spack/spack 45

ECP	is	working	towards	a	periodic,	hierarchical	release	process

• ECP teams work to ensure that libraries and components work together
– Historically, HPC codes used very few dependencies

• Now, groups of teams work together on small releases of
“Software Development Kits”

• SDKs are rolled into a larger, periodic release.

Devel
op

Packa
ge

Build

Test

Deplo
y

Math
Libraries

Devel
op

Packa
ge

Build

Test

Deplo
y

Visualization

Devel
op

Packa
ge

Build

Test

Deplo
y

Programming
Models

…

Build

TestDeploy

Integrat
e

E4S

ECP-wide
software release

https://e4s.io

LLNL-PRES-806064
github.com/spack/spack 46

LLNL
LANL
SNL
ANL

ORNL

NERSC

Automated	builds	using	ECP	CI	will	enable	a	robust,	widely		
available	HPC	software	ecosystem.

Spack users

Automated
package
builds

With	pipeline	efforts	at	E6	labs,	users	will	no	longer	need	to	build	their	own	software	for	high	performance.

Per-laboratory pipelines
Public and private

package repositories

LLNL-PRES-806064
github.com/spack/spack 47

Spack	focus	areas	in	FY20

• Multi-stage container generation with Spack
– Add support to Spack to generate multi-stage container builds that

exclude build dependencies from artifacts automatically

• Build Hardening with Spack Pipelines
– Continue working with E4S team to harden container builds

• Parallel builds
– “srun spack install” will use the entire allocation to build

• New concretizer based on fast ASP/SAT solvers

• Improved dependency models for compilers
– icpc depends on g++ for its libstdc++, and other ABI nightmares

Build-time artifacts

Run-time artifacts

1

2 5

3 4

B

B

76

L

L

8

R

BL

Multi-stage build
analysis

spack container build

LLNL-PRES-806064
github.com/spack/spack 48

▪ There	are	lots	of	ways	to	get	involved!	
— Contribute	packages,	documentation,	or	features	at	github.com/spack/

spack	
— Contribute	your	configurations	to	github.com/spack/spack-configs	

▪ Talk	to	us!	
— Join	our	Slack	channel	(see	GitHub	repo	for	info)	
— Join	our	Google	Group	(see	GitHub	repo	for	info)	
— Submit	GitHub	issues	and	pull	requests!	

▪ Docs	and	a	full	day	tutorial	are	available	at:	

spack.readthedocs.io

Join	the	Spack	community!

Tweet at us!
@spackpm

spack.io

