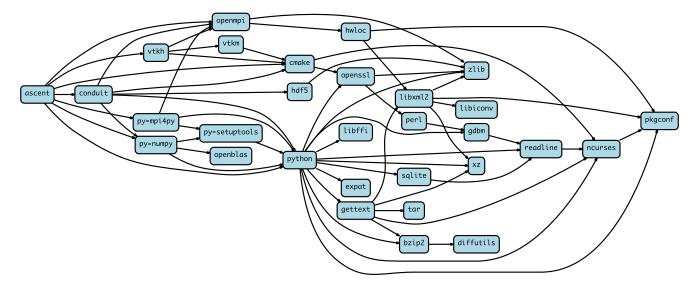


Todd Gamblin

Advanced Technology Office, Livermore Computing Lawrence Livermore National Laboratory

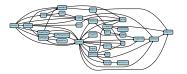
NCSA Blue Waters Webinar October 30, 2019

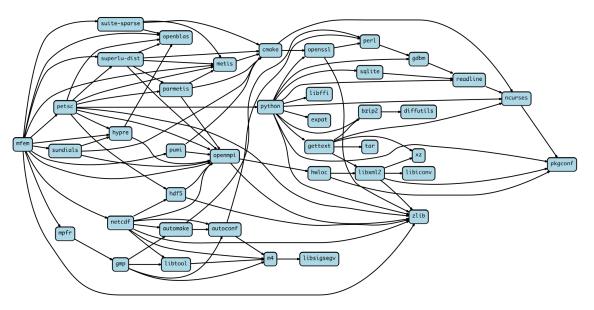

LLNL-PRES-806064

This work was performed under the auspices of the U.S Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security. LLC

github.com/spack/spack

Software complexity in HPC is growing

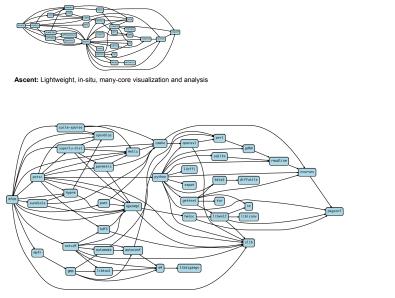

Ascent: Lightweight, in-situ, many-core visualization and analysis



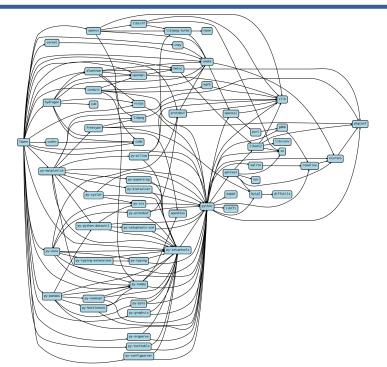
github.com/spack/spack

Software complexity in HPC is growing

Ascent: Lightweight, in-situ, many-core visualization and analysis

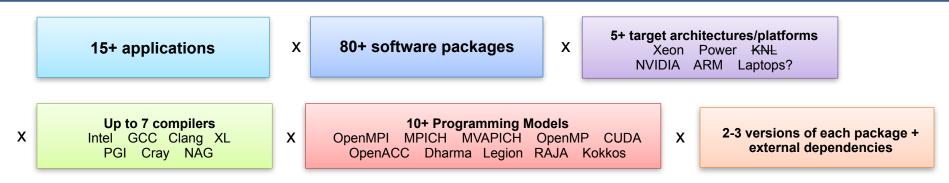


MFEM: Arbitrary high-order finite elements



Software complexity in HPC is growing

MFEM: Arbitrary high-order finite elements


LBANN: Artificial Neural Nets for HPC

github.com/spack/spack

The complexity of the exascale ecosystem threatens productivity.

= up to **1,260,000** combinations!

- Every application has its own stack of dependencies.
- Developers, users, and facilities dedicate (many) FTEs to building & porting.
- Often trade reuse and usability for performance.

We must make it easier to rely on others' software!

LLNL-PRES-806064 github.com/spack/spack

How to install software on a Mac laptop, circa 2013

-	
(gluo	n):~\$ port install libelf
>	Computing dependencies for libelf
>	Fetching distfiles for libelf
>	Verifying checksum(s) for libelf
>	Extracting libelf
>	Applying patches to libelf
>	Configuring libelf
>	Building libelf
>	Staging libelf into destroot
>	Installing libelf @0.8.13_2
	Activating libelf @0.8.13_2
	Cleaning libelf
	Updating database of binaries: 100.0%
	Scanning binaries for linking errors: 100.0%
	No broken files found.
	n):~\$
(grao	

LLNL-PRES-806064

6

How to install software on a supercomputer

- Download all 16 tarballs you need
- 2. Start building!

7

How to install software on a supercomputer

- 1. Download all 16 tarballs you need
- 2. Start building!

make Fight with compiler configure make	make install configure make make configure args make	
---	--	--

How to install software on a supercomputer

- 1. Download all 16 tarballs you need
- 2. Start building!

configure make	Fight with compiler	Image: install configure make make install configure make configure make configure make image: install image: install image: install configure make image: install image: install image: install image: insta		make install 3. Run code 4. Segfault!? 5. Start over
----------------	---------------------	---	--	---

What about modules?

- Most supercomputers deploy some form of *environment modules*
 - TCL modules (dates back to 1995) and Lmod (from TACC) are the most popular

```
$ gcc
-bash: gcc: command not found
$ module load gcc/7.0.1
$ gcc -dumpversion
7.0.1
```

- Modules don't handle installation!
 - They only modify your environment (things like PATH, LD_LIBRARY_PATH, etc.)
- Someone (likely a team of people) has already installed gcc for you!
 - Also, you can only `module load` the things they've installed

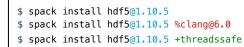
What about containers?

- Containers provide a great way to reproduce and distribute an already-built software stack
- Someone needs to build the container!
 - This isn't trivial
 - Containerized applications still have hundreds of dependencies
- Using the OS package manager inside a container is insufficient
 - Most binaries are built unoptimized
 - Generic binaries, not optimized for specific architectures
- HPC containers may need to be *rebuilt* to support many different hosts, anyway.
 - Not clear that we can ever build one container for all facilities
 - Containers likely won't solve the N-platforms problem in HPC

We need something more flexible to **build** the containers

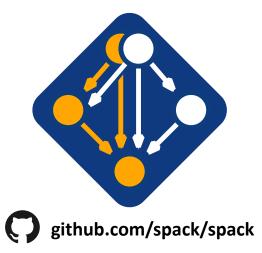
github.com/spack/spack

LUNI - PRES-806064


Spack is a flexible package manager for HPC

- Spack automates the build and installation of scientific software
- Packages are templated, so that users can easily tune for the host environment

No installation required: clone and go


\$ git clone https://github.com/spack/spack
\$ spack install hdf5

Simple syntax enables complex installs

\$ spack install hdf5@1.10.5 cppflags="-03 -g3"
\$ spack install hdf5@1.10.5 target=haswell
\$ spack install hdf5@1 10.5 tmpi cmpich@2 2

\$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

- Ease of use of mainstream tools, with flexibility needed for HPC tuning
- Major victories:
 - ARES porting time on a new platform was reduced from **2 weeks to 3 hours**
 - Deployment time for 1,300-package stack on Summit supercomputer reduced from 2 weeks to a 12-hour overnight build
 - Used by teams across ECP to accelerate development
 github.com/spack/spack

People who want to use or distribute software for HPC!

1. End Users of HPC Software

Install and run HPC applications and tools

2. HPC Application Teams

Manage third-party dependency libraries

3. Package Developers

- People who want to package their own software for distribution

4. User support teams at HPC Centers

People who deploy software for users at large HPC sites

Spack is used worldwide!

github.com/spack/spack

Active Users on the spack.readthedocs.io

All Users	+ Add Segme	ent	Oct 22, 2017 - Oct 28, 2019 📼
Active Users			
☑ 1 Day Active Users ☑ 7 Day Act	tive Users 🗹 14 Day Active Users	28 Day Active Users	
3,000			
			my ment
2,000			Sunday, October 27, 2019
			 1 Day Active Users: 54 7 Day Active Users: 696 14 Day Active Users: 1,277 28 Day Active Users: 2,278
1,000		man m	
many man			
2018		2019	
1 Day Active Users	7 Day Active Users	14 Day Active Users	28 Day Active Users
152 % of Total: 100.00% (152)	684 % of Total: 100.00% (684)	1,264 % of Total: 100.00% (1,264)	2,270 % of Total: 100.00% (2,270)

Spack is being used on many of the top HPC systems

- Official deployment tool for the U.S. Exascale Computing Project
- 7 of the top 10 supercomputers
- High Energy Physics community
 - Fermilab, CERN, collaborators
- Astra (Sandia)
- Fugaku (Japanese National Supercomputer Project)

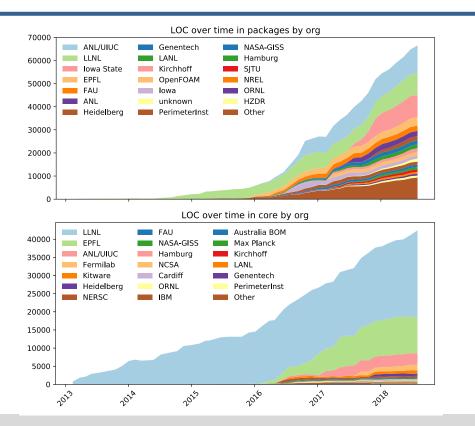
EXASCALE COMPUTING PROJECT

Fugaku coming to RIKEN in 2021 DOE/MEXT collaboration

Summit (ORNL), Sierra (LLNL)

SuperMUC-NG (LRZ, Germany)

Edison, Cori, Perlmutter (NERSC)



github.com/spack/spack

Contributions to Spack continue to grow!

- In November 2015, LLNL provided most of the contributions to Spack
- Since then, we've gone from 300 to over 3,500 packages
- Most packages are from external contributors!
- Many contributions in core, as well.
- We are committed to sustaining Spack's open source ecosystem!

github.com/spack/spack

Related Work

Spack is not the first tool to automate builds

Inspired by copious prior work

1. "Functional" Package Managers

- Nix
- GNU Guix

2. Build-from-source Package Managers

- Homebrew
- MacPorts

Other tools in the HPC Space:

- Easybuild
 - An *installation* tool for HPC
 - Focused on HPC system administrators different package model from Spack
 - Relies on a fixed software stack harder to tweak recipes for experimentation
- Conda
 - Very popular binary package manager for data science
 - Not targeted at HPC; generally unoptimized binaries

<u>https://nixos.org/</u> https://www.gnu.org/s/guix/

http://brew.sh https://www.macports.org

http://hpcugent.github.io/easybuild/

https://conda.io

github.com/spack/spack

Spack Basics

github.com/spack/spack

Spack provides a *spec* syntax to describe customized DAG configurations

- \$ spack install mpileaks
- \$ spack install mpileaks@3.3
- \$ spack install mpileaks@3.3 %gcc@4.7.3
- \$ spack install mpileaks@3.3 %gcc@4.7.3 +threads
- \$ spack install mpileaks@3.3 cppflags="-03 -g3"
- \$ spack install mpileaks@3.3 target=skylake
- \$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3
- Each expression is a *spec* for a particular configuration
 - Each clause adds a constraint to the spec
 - Constraints are optional specify only what you need.
 - Customize install on the command line!
- Spec syntax is recursive
 - Full control over the combinatorial build space

@ custom version % custom compiler +/- build option set compiler flags set target microarchitecture ^ dependency information

unconstrained

`spack list` shows what packages are available

ъ ѕраск ціѕ	τ					• S	nack has	over + 500) nack	ages now
 Spack list Spack has over 3,500 packages now. 										
activeharmony	cgal	fish	gtkplus	libgd	mesa	openmpi	py-coverage	py-pycparser	qt	tcl
adept-utils	cgm	flex	harfbuzz	libgpg-error	metis	openspeedshop	py-cython	py-pyelftools	qthreads	texinfo
apex	cityhash	fltk	hdf	libjpeg-turbo	Mitos	openssl	py-dateutil	py-pygments	R	the_silver_searcher
arpack	cleverleaf	flux	hdf5	libjson-c	mpc	otf	py-epydoc	py-pylint	ravel	thrift
asciidoc	cloog	fontconfig	hwloc	libmng	mpe2	otf2	py-funcsigs	py-pypar	readline	tk
atk	cmake	freetype	hypre	libmonitor	mpfr	pango	py-genders	py-pyparsing	rose	tmux
atlas	cmocka	gasnet	icu	libNBC	mpibash	papi	py-gnuplot	py-pyqt	rsync	tmuxinator
atop	coreutils	gcc	icu4c	libpciaccess	mpich	paraver	py-h5py	py-pyside	ruby	trilinos
autoconf	cppcheck	gdb	ImageMagick	libpng	mpileaks	paraview	py-ipython	py-pytables	SAMRAI	uncrustify
automaded	cram	gdk-pixbuf	isl	libsodium	mrnet	parmetis	py-libxml2	py-python-daemon	samtools	util-linux
automake	cscope	geos	jdk	libtiff	mumps	parpack	py-lockfile	py-pytz	scalasca	valgrind
bear	cube	gflags	jemalloc	libtool	munge	patchelf	py-mako	py-rpy2	scorep	vim
bib2xhtml	curl	ghostscript	jpeg	libunwind	muster	pcre	py-matplotlib	py-scientificpython	scotch	vtk
binutils	czmq	git	judy	libuuid	mvapich2	pcre2	py-mock	py-scikit-learn	scr	wget
bison	damselfly	glib	julia	libxcb	nasm	pdt	py-mpi4py	py-scipy	silo	WX
boost	dbus	glm	launchmon	libxml2	ncdu	petsc	py-mx	py-setuptools	snappy	wxpropgrid
bowtie2	docbook-xml	global	lcms	libxshmfence	ncurses	pidx	py-mysqldb1	py-shiboken	sparsehash	xcb-proto
boxlib	doxygen	glog	leveldb	libxslt	netcdf	pixman	py-nose	py-sip	spindle	xerces-c
bzip2	dri2proto	glpk	libarchive	llvm	netgauge	pkg-config	py-numexpr	py-six	spot	xz
cairo	dtcmp	gmp	libcerf	llvm-lld	netlib-blas	pmgr_collective	py-numpy	py-sphinx	sqlite	yasm
callpath	dyninst	gmsh	libcircle	lmdb	netlib-lapack	postgresql	py-pandas	py-sympy	stat	zeromq
cblas	eigen	gnuplot	libdrm	lmod	netlib-scalapack	ppl	py-pbr	py-tappy	sundials	zlib
cbtf	elfutils	gnutls	libdwarf	lua	nettle	protobuf	py-periodictable	py-twisted	swig	zsh
cbtf-argonavis	elpa	gperf	libedit	lwgrp	ninja	py-astropy	py-pexpect	py-urwid	szip	
cbtf-krell	expat	gperftools	libelf	lwm2	ompss	py-basemap	py-pil	py-virtualenv	tar	
cbtf-lanl	extrae	graphlib	libevent	matio	ompt-openmp	py-biopython	py-pillow	py-yapf	task	
cereal	exuberant-ctags	graphviz	libffi	mbedtls	opari2	py-blessings	py-pmw	python	taskd	
cfitsio	fftw	gsl	libgcrypt	memaxes	openblas	py-cffi	py-pychecker	qhull	tau	

github.com/spack/spack

¢ snack list

LLNL-PRES-806064

E,

Charly has over 2 EOO packages now

`spack find` shows what is installed

- All the versions coexist!
 Multiple versions of same package are ok.
- Packages are installed to automatically find correct dependencies.
- Binaries work regardless of user's environment.
- Spack also generates module files.
 - Don't *have* to use them.

Users can query the full dependency configuration of installed packages.

<pre>\$ spack find callpath ==> 2 installed packages. linux-rhel6-x86_64 / clang@3.4 linux-rhel6-x86_64 / gcc@4.9.2 callpath@1.0.2 callpath@1.0.2</pre>						
		ind -dl callpath				
		stalled packages. •rhel6-x86_64 / clang@3.4	linux	rhel6-x86_64 / gcc@4.9.2		
	xv2clz2	callpath@1.0.2	udltshs	callpath@1.0.2		
	ckjazss	^adept-utils@1.0.1	rfsu7fb	^adept-utils@1.0.1		
Expand dependencies	3ws43m4	^boost@1.59.0	ybet64y	^boost@1.55.0		
with spack find -d	ft7znm6	^mpich@3.1.4	aa4ar6i	^mpich@3.1.4		
with space i that a	qqnuet3	^dyninst@8.2.1	tmnnge5	^dyninst@8.2.1		
Architecture,	3ws43m4	^boost@1.59.0	ybet64y	<pre>^boost@1.55.0</pre>		
	g65rdud	^libdwarf@20130729	g2mxrl2	^libdwarf@20130729		
compiler, versions	cj5p5fk	^libelf@0.8.13	ynpai3j	^libelf@0.8.13		
and variants may	cj5p5fk	^libelf@0.8.13	ynpai3j	^libelf@0.8.13		
	g65rdud	^libdwarf@20130729 ^libelf@0.8.13	g2mxrl2	<pre>^libdwarf@20130729</pre>		
differ between the	cj5p5fk cj5p5fk	^libelf@0.8.13	ynpai3j ynpai3j	^libelf@0.8.13		
builds.	ft7znm6	^mpich@3.1.4	aa4ar6i	^mpich@3.1.4		
ILINL-PRES-80004 github.com/spack/spack Civermore Civermore 21						

Spack manages installed compilers

- Compilers are automatically detected
 - Automatic detection determined by OS
 - Linux: PATH

LLNL-PRES-806064

- Cray: `module avail`
- Compilers can be manually added
 - Including Spack-built compilers

<pre>\$ spack compi ==> Available</pre>		
gcc@4.2.1	gcc@4.9.3	
clang clang@6.0		
github.com	/spack/spack	

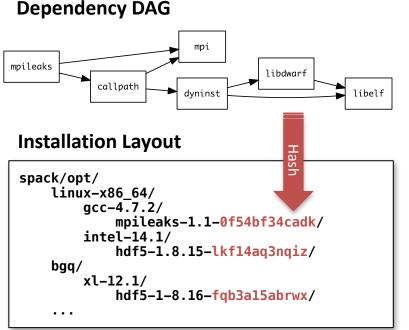
```
compilers:
- compiler:
   modules: []
   operating_system: ubuntu14
    paths:
      cc: /usr/bin/gcc/4.9.3/gcc
      cxx: /usr/bin/gcc/4.9.3/g++
      f77: /usr/bin/gcc/4.9.3/gfortran
      fc: /usr/bin/gcc/4.9.3/gfortran
    spec: gcc@4.9.3
- compiler:
   modules: []
   operating_system: ubuntu14
   paths:
      cc: /usr/bin/clang/6.0/clang
      cxx: /usr/bin/clang/6.0/clang++
      f77: null
     fc: null
    spec: clang@6.0
  compiler:
                  Lawrence Livermore
                  National Laboratory
```

. .

compilers.yaml

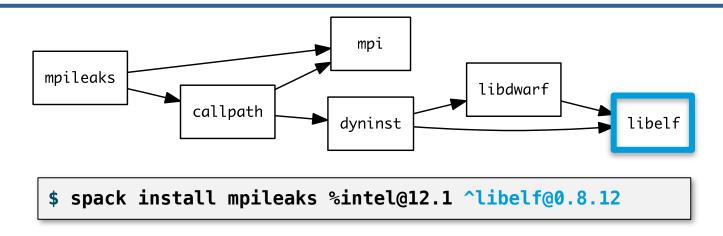
Core Spack Concepts

E

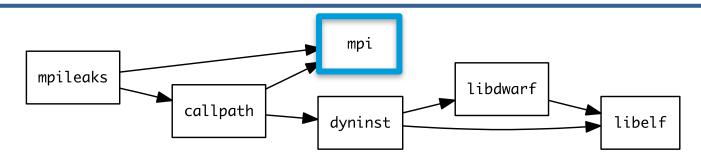

github.com/spack/spack

Most existing tools do not support combinatorial versioning

- Traditional binary package managers
 - RPM, yum, APT, yast, etc.
 - Designed to manage a single stack.
 - Install *one* version of each package in a single prefix (/usr).
 - Seamless upgrades to a stable, well tested stack
- Port systems
 - BSD Ports, portage, Macports, Homebrew, Gentoo, etc.
 - Minimal support for builds parameterized by compilers, dependency versions.
- Virtual Machines and Linux Containers (Docker)
 - Containers allow users to build environments for different applications.
 - Does not solve the build problem (someone has to build the image)
 - Performance, security, and upgrade issues prevent widespread HPC deployment.


Spack handles combinatorial software complexity.

- Each unique dependency graph is a unique configuration.
- Each configuration installed in a unique directory.
 - Configurations of the same package can coexist.
- Hash of entire directed acyclic graph (DAG) is appended to each prefix.
- Installed packages automatically find dependencies
 - Spack embeds RPATHs in binaries.
 - No need to use modules or set LD_LIBRARY_PATH
 - Things work the way you built them

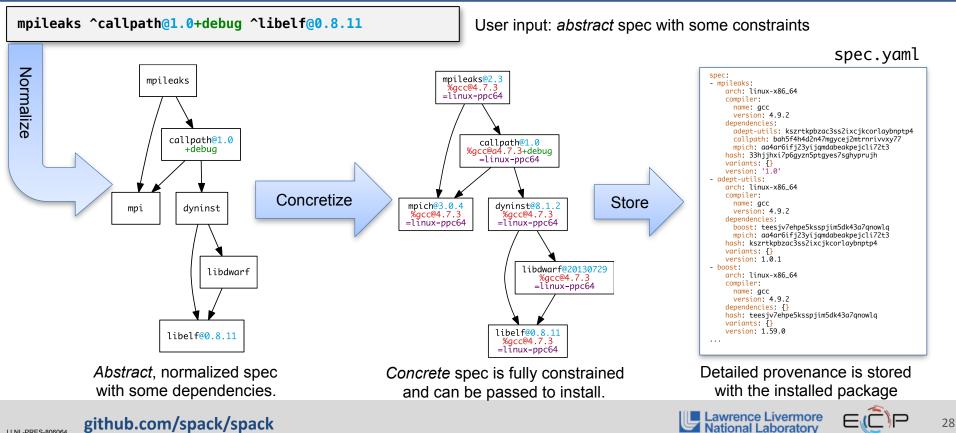

Spack Specs can constrain versions of dependencies

- Spack ensures one configuration of each library per DAG
 - Ensures ABI consistency.
 - User does not need to know DAG structure; only the dependency names.
- Spack can ensure that builds use the same compiler, or you can mix
 - Working on ensuring ABI compatibility when compilers are mixed.

Spack handles ABI-incompatible, versioned interfaces like MPI

- mpi is a virtual dependency
- Install the same package built with two different MPI implementations:

<pre>\$ spack install mpileaks ^mvapich@1.9</pre>	<pre>\$ spack install mpileaks ^openmpi@1.4:</pre>


• Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

\$ spack install mpileaks ^mpi@2

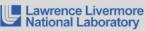
Concretization fills in missing configuration details when the user is not explicit.

Use `spack spec` to see the results of concretization

\$ spack spec mpileaks Input spec
mpileaks
Concretized
<pre>mpileaks@1.0%gcc@5.3.0 arch=darwin-elcapitan-x86_64</pre>
<pre>^boost@1.61.0%gcc@5.3.0+atomic+chrono+date_time~debug+filesystem~graph</pre>
~icu_support+iostreams+locale+log+math~mpi+multithreaded+program_options ~python+random +regex+serialization+shared+signals+singlethreaded+system
+test+thread+timer+wave arch=darwin-elcapitan-x86_64 ^bzip2@1.0.6%gcc@5.3.0 arch=darwin-elcapitan-x86_64
^zlib@1.2.8%gcc@5.3.0 arch=darwin-elcapitan-x86_64
<pre>^openmpi@2.0.0%gcc@5.3.0~mxm~pmi~psm~psm2~slurm~sqlite3~thread_multiple~tm~verbs+vt arch=darwin-elcapitan-x86_64</pre>
<pre>^libpciaccess@0.13.4%gcc@5.3.0 arch=darwin-elcapitan-x86_64</pre>
<pre>^m4@1.4.17%gcc@5.3.0+sigsegv arch=darwin-elcapitan-x86_64</pre>
<pre>^libsigsegv@2.10%gcc@5.3.0 arch=darwin-elcapitan-x86_64 ^callpath@1.0.2%gcc@5.3.0 arch=darwin-elcapitan-x86_64</pre>
<pre>^dyninst@9.2.0%gcc@5.3.0~stat_dysect arch=darwin-elcapitan-x86_64</pre>
^libelf@0.8.13%gcc@5.3.0 arch=darwin-elcapitan-x86_64

github.com/spack/spack

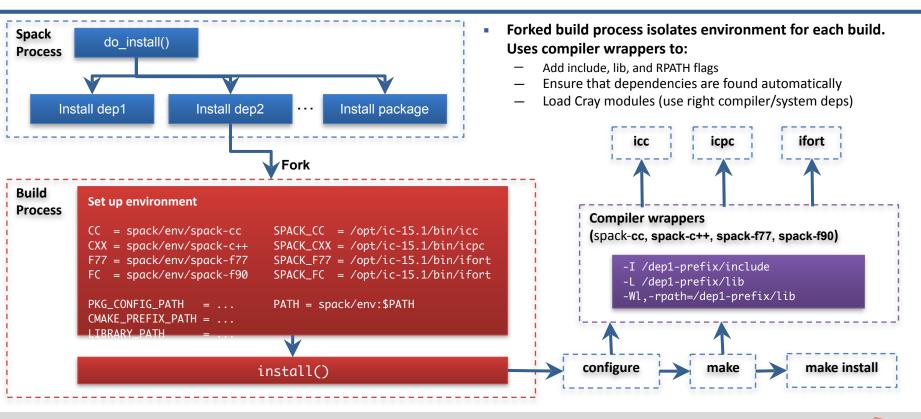
LLNL-PRES-806064


EXPSCALE COMPL

29

Not shown: patches, resources, conflicts, other directives.

Spack packages are *templates* They use a simple Python DSL to define how to build



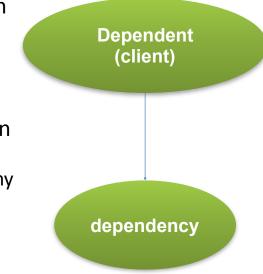
30

github.com/spack/spack

Spack builds each package in its own compilation environment

github.com/spack/spack

Some advanced features


E

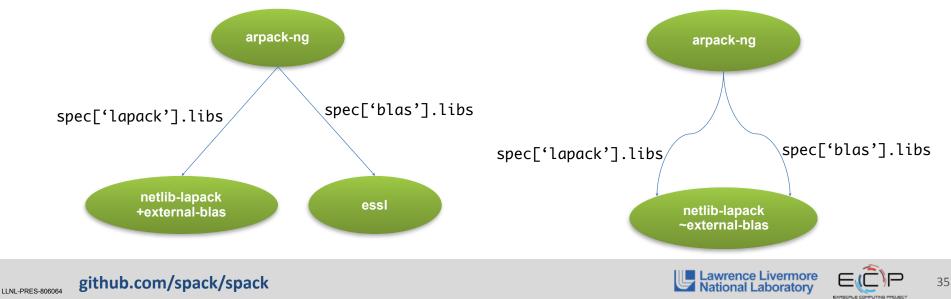
EXRSCALE COMPL

github.com/spack/spack

Advanced Topics in Packaging

- Spack tries to automatically configure packages with information from dependencies
 - But there are many special cases. Often you need to retrieve details about dependencies to configure properly
- The goal is to answer the following questions that come up when writing package files:
 - How do I retrieve dependency libraries/headers when configuring my package?
 - How does spack help me configure my build-time environment?
- We'll start with a client view and then look at how we add functionality to packages to make it easier for dependents

Accessing Dependency Libraries


- Although Spack performs some work to help a build find libraries, you may need to explicitly specify dependency libraries during configuration
- Specs provide a .libs property which retrieves the individual library files provided by the package
- Accessing .libs for a virtual package will retrieve the libraries provided by the chosen implementation

```
class ArpackNg(Package):
                                                                       .libs.joined() expresses the list of libraries
    depends on('blas')
                                                                       as a single string like:
    depends on('lapack')
                                                                           "/.../lib1.so;/.../lib2.so"
                                                                       (e.g. for cmake)
   def install(self, spec, prefix):
        lapack libs = spec['lapack'].libs.joined(';')
        blas libs = spec['blas'].libs.joined(';')
                                                                       .libs.search_flags expresses the libraries as
                                                                       linker arguments like:
        cmake(*[
                                                                         "-L/../libdir1/ -L/../libdir2/"
            '-DLAPACK LIBRARIES={0}'.format(lapack libs),
                                                                       (e.g. as an argument to the compiler)
            '-DBLAS LIBRARIES={0}'.format(blas libs)
        ], '.')
```


Accessing Dependency Libraries: Virtuals

- The client side code for accessing ".libs" is the same regardless of which implementation of blas is used
- As a client, you don't have to care whether 'blas' and 'lapack' are provided by the same implementation

What's New? What's on the Road Map?

EXASCALE COMP.

github.com/spack/spack

We are working to enable optimized software distribution for HPC

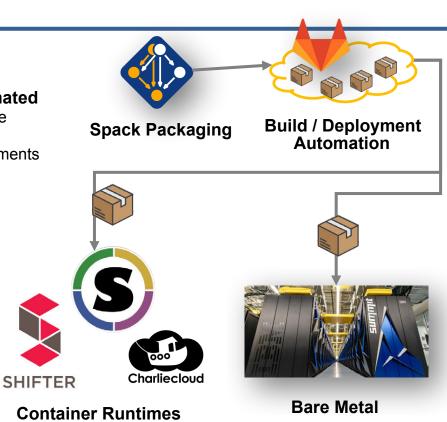
- Distribution effort required is similar to efforts like Red Hat, Debian, Ubuntu, etc.
 - Curation and vetting of software
 - Packaging, building
 - Wide distribution
- HPC community is not as mainstream, not as widespread as these distributions
- HPC platform complexity poses challenges
 - Many (often unique) platforms
 - Many software ecosystems
 - From-source distribution
 - Must support Optimization, GPUs, fast networks
- Much more automation is required to practically support our ecosystem!

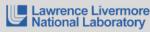
github.com/spack/spack

LLNI -PRES-806064

Our strategy is to enable exascale software distribution on *both* bare metal and containers

New capabilities to make HPC packaging easy and automated


- · Optimized builds and package binaries that exploit the hardware
- Workflow automation for facilities, developers, and users
- Strong integration with containers as well as bare metal deployments


- Work with ECP and other partners to harden packages

- Build pipelines at facilities
- Coordination on multi-site testing
- Security integration

- Outreach to users

• Tutorials, workshops, BOFs

38

github.com/spack/spack

LLNL-PRES-806064

Spack now understands specific target microarchitectures

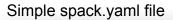
- We have developed a cross-platform library to detect and compare microarchitecture metadata
 - Detects based on /proc/cpuinfo (Linux), sysctl (Mac)
 - Allows comparisons for compatibility, e.g.:

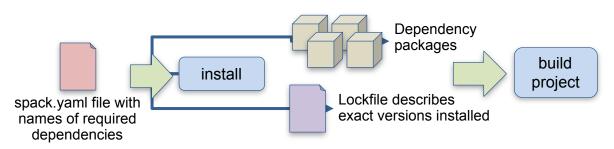
skylake > broadwell zen2 > x86_64

• Key features:

LLNL-PRES-806064

- Know which compilers support which chips/which flags
- Determine compatibility
- Enable creation and reuse of optimized binary packages
- Easily query available architecture features for portable build recipes
- We will be extracting this as a standalone library for other tools & languages
 Hope to make this standard!


aarch64 ppc64	ppc64le x86 x	86_64		Skylake
IBM - ppc64	10			
power7 power8	power9			
IBM - ppc64le				
power8le power	9le			
AuthenticAMD - x86	54			Pow
		r steamroller	excavator zen	zen2
GenuineIntel - x86_				
nocona westme				
core2 sandyb nehalem ivybri			icelake	
nenatem tvybrt	uge S kyluke	cannontake		
GenuineIntel - x86				
i686 pentium2	pentium3 penti	um4 prescott		ARCA



39

Spack environments enable users to build customized stacks from an abstract description

- Allows developers to bundle Spack configuration with their repository
- Can also be used to maintain configuration together with Spack packages.
 - E.g., versioning your own local software stack with consistent compilers/ **MPI** implementations
- Manifest / Lockfile model pioneered by Bundler is becoming standard
 - spack.yaml describes project requirements
 - spack.lock describes exactly what versions/configurations were installed, allows them to be reproduced.

- ../special-config-directory/ - ./config-file.vaml # add package specs to the `specs` list

include external configuration

specs:

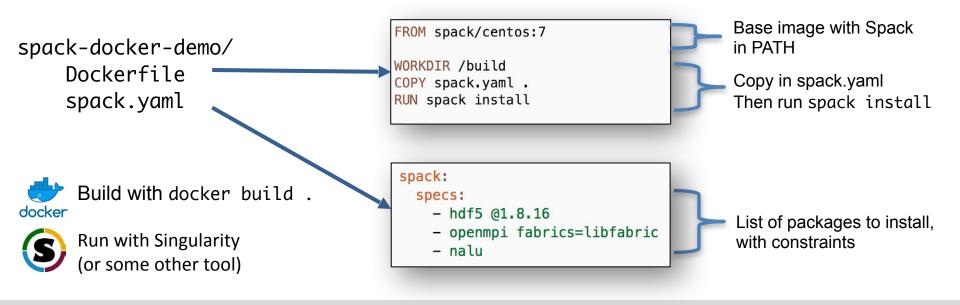
spack:

- hdf5

include:

- libelf

- openmpi



github.com/spack/spack

LLNL-PRES-806064

We have simplified container deployments using Spack Environments

- We recently started providing base images on DockerHub with Spack preinstalled.
- Very easy to build a container with some Spack packages in it:

LLNL-PRES-806064

We have developed Spack stacks: combinatorial environments for entire facility deployments

spack:

definitions: compilers:

[%gcc@5.4.0, %clang@3.8, %intel@18.0.0] mpis:

[^mvapich2@2.2, ^mvapich2@2.3, ^openmpi@3.1.3] packages:

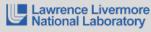
- nalu
- hdf5
- hypre
- trilinos
- petsc
- ---

specs:

cartesian product of the lists above
matrix:

- [\$packages]
- [\$compilers]
- [\$mpis]

modules:

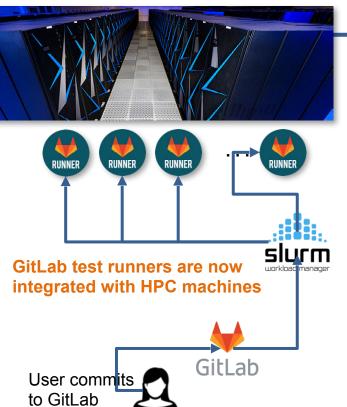

LLNL-PRES-806064

```
lmod:
```

```
core_compilers: [gcc@5.4.0]
hierarchy: [mpi, lapack]
hash_length: 0
```

Allow users to easily express a huge cross-product of specs

- All the packages needed for a facility
- Generate modules tailored to the site
- Generate a directory layout to browse the packages
- Build on the environments workflow
 - Manifest + lockfile
 - Lockfile enables reproducibility
- Relocatable binaries allow the same binary to be used in a stack, regular install, or container build.
 - Difference is how the user interacts with the stack
 - Single-PATH stack vs. modules.


github.com/spack/spack

LLNI -PRES-806064

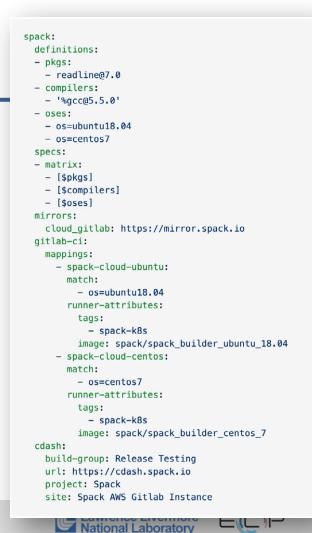
open source code to be tested safely

We have been heavily involved in the ECP CI project.

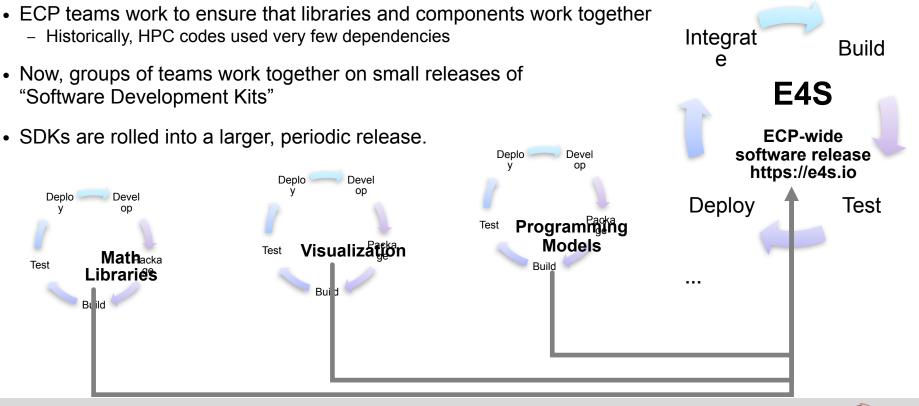
- We have added security features to the open source GitLab product.
 - Integration with center identity management
 - Integration with schedulers like SLURM, LSF
- We are democratizing testing at Livermore Computing
 - Users can run tests across 30+ machines by editing a file
 - Previously, each team had to administer own servers
- ECP sites are deploying GitLab CI for users
 - All HPC centers can leverage these improvements
 - NNSA labs plan to deploy common high-side CI infrastructure
 - We are developing new security policies to allow external open source code to be tested safely on key machines

awrence Livermore

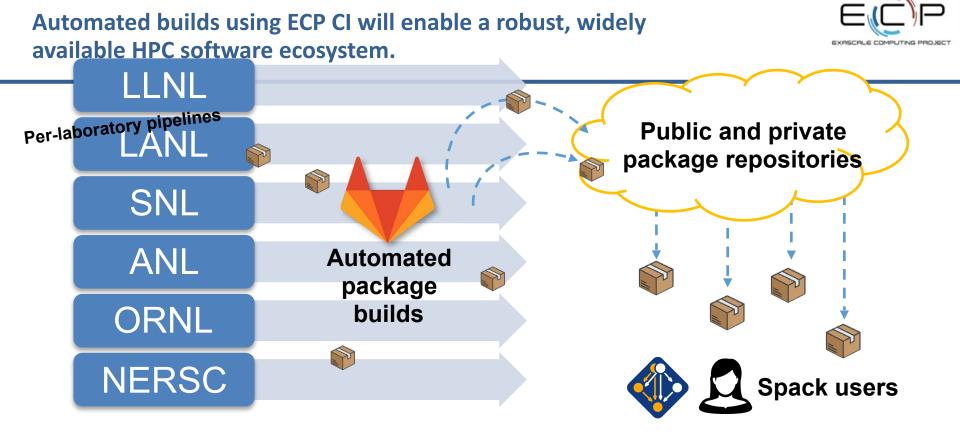
National Laboratory



Spack has added GitLab CI integration to automate package build pipelines


- Builds on Spack environments
 - Support auto-generating GitLab CI jobs
 - Can run in a Kube cluster or on bare metal runners at an HPC site
 - Sends progress to CDash

Stage-0			Stage-1			Stage-2			Stage-3	
Iffutils 3.6 gc	0		🕑 bzip2 1.0.6 gcc	0		🕑 boost 1.69.0 g	0		gdbm 1.18.1 gc	
Iffutils 3.6 gc	0		🕑 bzip2 1.0.6 gcc	0		🕑 boost 1.69.0 g	0		gdbm 1.18.1 gc	
	0		🕑 libxml2 2.9.8 g	0		⊘ libtool 2.4.6 gc	0		O libpciaccess 0	
	0		⊘ libxml2 2.9.8 g	0		⊘ libtool 2.4.6 gc	0		O libpciaccess 0	
libiconv 1.15 gc	0		🕑 m4 1.4.18 gcc	0		⊘ readline 7.0 gc	0		🕑 sqlite 3.26.0 g	
libiconv 1.15 gc	0		🕑 m4 1.4.18 gcc	0		⊘ readline 7.0 gc	0		🕝 sqlite 3.26.0 g	
⊘ libsigsegv 2.11	0		🕝 ncurses 6.1 gc	0						
libsigsegv 2.11	0		ncurses 6.1 gc	0						

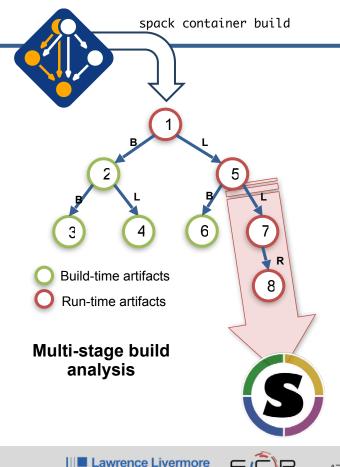

ECP is working towards a periodic, hierarchical release process

github.com/spack/spack

With pipeline efforts at E6 labs, users will no longer need to *build* their own software for high performance.

LLNL-PRES-806064

46

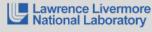

Spack focus areas in FY20

Multi-stage container generation with Spack

- Add support to Spack to generate *multi-stage* container builds that exclude build dependencies from artifacts automatically
- Build Hardening with Spack Pipelines
 - Continue working with E4S team to harden container builds
- Parallel builds

LLNI -PRES-806064

- "srun spack install" will use the entire allocation to build
- New concretizer based on fast ASP/SAT solvers
- Improved dependency models for compilers
 - icpc depends on g++ for its libstdc++, and other ABI nightmares


National Laboratory

Join the Spack community!

- There are lots of ways to get involved!
 - Contribute packages, documentation, or features at github.com/spack/ spack
 - Contribute your configurations to github.com/spack/spack-configs
- Talk to us!
 - Join our **Slack channel** (see GitHub repo for info)
 - Join our Google Group (see GitHub repo for info)
 - Submit GitHub issues and pull requests!
- Docs and a full day tutorial are available at: spack.readthedocs.io

