HPC Libraries and Frameworks

John E. Stone
Theoretical and Computational Biophysics Group
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
http://www.ks.uiuc.edu/~johns/

Petascale Computing Institute,
National Center for Supercomputing Applications,
University of Illinois at Urbana-Champaign
Overview

• Benefits of libraries and frameworks
• Exemplary libraries
• Open vs. proprietary/commercial
• State-of-the-art library technologies
• Trade-offs, costs, and limitations of libraries and frameworks
• Library usage do’s and don’ts
Major Types and Uses of Libraries and Frameworks

- Avoid “reinventing the wheel”:
 - Mathematical functions
 - Data structures, containers, serialization and I/O
 - Algorithms

- Hardware-optimized: abstract hardware-specific implementation

- Callable from C, C++, Fortran, Python, etc.
Role of HPC Libraries and Frameworks in Software Dev. Cycle

• Use libraries/frameworks to fill software “gap”
• Profiling to identify performance bottlenecks
• Find HPC libraries or algorithm frameworks covering gaps
Benefits from Using Libraries and Frameworks

• Reduce application devel / maint cost
• Use a validated implementation of tricky algorithms, e.g., solvers, RNGs
• Hardware-specific optimizations, abstraction
• Standardized or compatibility APIs allow libraries to be dropped in, swapped, compared
Library Examples

• Mathematical functions:
 – Cephes, SVML, GSL

• Linear algebra kernels and solvers:
 – BLAS, LAPACK, MAGMA, MKL, cuBLAS, cuSPARSE, SCALAPACK, ...

• Random, quasi-random number generation:
 – SPRNG, cuRAND, GSL

• Fast Fourier Transform:
 – FFTW, cuFFT, MKL

The list goes on and on…
Example: Dense Linear Algebra

• Due to the maturity and importance of linear algebra software, a thriving ecosystem of compatible and interoperable libraries and frameworks exist

• Libraries available for fundamental algorithms, higher level solvers, special hardware platforms, parallel solvers…

• Compatible and interoperable APIs
Dense Linear Algebra

• BLAS – Fundamental dense linear algebra
 – Level 1: Vector-Vector
 – Level 2: Matrix-Vector
 – Level 3: Matrix-Matrix

• LAPACK – Matrix solvers based on BLAS
 – Linear equations, eigenvalue problems, …
 – Matrix factorization: LU, QR, SVD, Cholesky, …

• SCALAPACK – Parallel LAPACK
 – Extended distributed memory message passing APIs
Evaluating Libraries

• Accuracy, correctness, robustness against failure(s)
• Performance
• Standard or compatible APIs
• Language bindings
• Portability, Composability, and Hardware Support
 – Thread-safe? Interferes with MPI_COMM_WORLD?
 – Compatible with OpenMP, OpenACC, CUDA, etc?
• Built-in parallelization?:
 – Intra-node (multi-core CPUs, GPUs)
 – Distributed memory
Open vs. Proprietary, Free vs. Commercial

• Open libs ideal for gaining deep understanding of performance limitations imposed by APIs, application usage

• **Hardware vendor libs** try to provide optimal performance, approaching “speed of light” for their own platform

• Commercially licensed libs may present application distribution challenges in terms of price, ultimate scalability, etc.
Example of Proprietary Lib Perf.

Example of Proprietary Lib Perf.

3D FFT Performance Boost

3D FFT Performance Boost using Intel® Math Kernel Library 2019 Gold vs FFTW
Single Precision Complex 3D FFT on Intel® Xeon® Platinum Processor 8180

Libraries vs. Frameworks

• Libraries typically “canned”, not much caller-specialization possible
 – Example: Matrix Multiply
 – **Caller runs the code**

• Frameworks combine some existing code with caller-provided code to achieve application-specific functionality
 – Example: PETsc, AI stacks, OptiX Ray Tracing
 – **Framework typically runs the code**
C++ Template Libraries

- Potential for generality across many types/classes
- Performance opportunities:
 - Template specialization, template metaprogramming
 - Compile-time optimization of per-thread ops by constant folding, loop unrolling, etc.
- Eigen linear algebra template library
- NVIDIA GPU accelerated template libraries:
 - **Thrust**: STL-like vector ops on GPUs (incl sort/scan)
 - **CUB**: per-block, device-wide sort/scan/reductions/etc
 - **CUTLASS**: matrix linear algebra ops
Exploit New Hardware and Algorithmic Advances

• Library abstraction allows replacement of conventional solver with iterative refinement

• Mixed precision solvers, e.g. half-, single-, double-precision

• Example: Make use of special purpose hardware such as NVIDIA Tensor cores for higher performance dense linear algebra…
“Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers”, Haidar et al., SC2018

(a) Matrix of type 1: diagonally dominant.
State-of-the-Art Library Runtime Technologies

• Runtime dispatch of hardware-optimized code paths: MKL, CUDA Libraries
• Autotuners: FFTW “Plan”
• Built-in runtime systems for scheduling work in complex multi-phase parallel algorithms, heterogeneous platforms: MAGMA (UTK)
Library Performance Considerations

• How does library perform with varying problem size?

• Libraries may provide special APIs for batching of large numbers of “small problems

• May have significant startup cost:
 – Autotuners
 – JIT code generators
 – GPUs or other accelerators
Improving Performance with Batching APIs

• Trivial example:
 – Replace separate sin() and cos() calls with sincos() (C99 math lib standard)
 – Input angle domain checking logic is amortized, approach ~2x speedup

• Mainstream examples:
 – FFTW, MKL, cuFFT batched FFTs
 – MAGMA:
JIT Code Generation for Large Repetitions (1000x) of Small Problem Sizes

Heterogeneous Compute Node

- **NUMA CPU architecture**
- **Dense PCIe-based multi-GPU compute node**
- **Application would ideally exploit all of the CPU, GPU, and I/O resources concurrently…**

 (I/O devs not shown)

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations
Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten.
http://dx.doi.org/10.1016/j.parco.2014.03.009
Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations
Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten.
http://dx.doi.org/10.1016/j.parco.2014.03.009
Exemplary Heterogeneous Computing Challenges

• Tuning, adapting, or developing software for multiple processor types
• Decomposition of problem(s) and load balancing work across heterogeneous resources for best overall performance and work-efficiency
• Managing data placement in disjoint memory systems with varying performance attributes
• Transferring data between processors, memory systems, interconnect, and I/O devices
• ...
Using Libraries for Programming Heterogeneous Computing Architectures

• Use drop-in libraries in place of CPU libs
 – Little or no code development
 – Examples: MAGMA, cuBLAS, cuSPARSE, cuSOLVER, cuFFT libraries, many more…
 – Speedups limited by Amdahl’s Law and overheads associated with data movement between CPUs and GPUs

Costs, Limitations, Arising from Using Libraries and Frameworks

- Lib API may require inconvenient data layout
- Lib API boundaries inhibit inlining of small functions, and prevent “kernel fusion”
- Lib implementation may sacrifice some performance to ensure generality
- Too many library dependencies create challenge for source compilation, e.g., for MPI codes
Libraries May Sacrifice Performance to Ensure Generality

- Math lib functions do significant preprocessing and validation on input parameters for allowed function domain
- Caller may know that that input param may fall within a very limited subrange, but there’s no way to exploit this in a conventional library
- Bespoke math functions can outrun general math lib function by significant margin for limited input domain or reduced precision
Example of Lost Vectorization or Inlining Opportunities

• Traditional math libraries don’t permit inlining of function calls into calling loop
• Significant function call overhead if the main content of loop is a library routine
• So-called “header-only” C++ template libraries can overcome some of this
• Special intrinsics and short-vector math libraries can be used to resolve cases where library calls would otherwise inhibit vectorization
MO Kernel for One Grid Point (Naive C)

```
for (at=0; at<numatoms; at++) {
    int prim_counter = atom_basis[at];
    calc_distances_to_atom(&atompos[at], &xdist, &ydist, &zdist, &dist2, &xdiv);
    for (contracted_gto=0.0f, shell=0; shell < num_shells_per_atom[at]; shell++) {
        int shell_type = shell_symmetry[shell_counter];
        for (prim=0; prim < num_prim_per_shell[shell_counter]; prim++) {
            float exponent = basis_array[prim_counter];
            float contract_coeff = basis_array[prim_counter + 1];
            contracted_gto += contract_coeff * expf(-exponent*dist2);
            prim_counter += 2;
        }
        for (tmpshell=0.0f, j=0, zdp=1.0f; j<=shell_type; j++, zdp*=zdist) {
            int imax = shell_type - j;
            for (i=0, ydp=1.0f, xdp=pow(xdist, imax); i<=imax; i++, ydp*=ydist, xdp*=xdiv) {
                tmpshell += wave_f[ifunc++] * xdp * ydp * zdp;
            }
            value += tmpshell * contracted_gto;
            shell_counter++;
        }
    }
    ...
```
Value of Bespoke Math Functions

• Eliminate overheads from checking / preprocessing of general input domain
• Inlinable into loop body
• Only implement caller-required numerical precision / accuracy
I/O Libraries

• I/O is now and for all time a significant concern for HPC apps
• I/O performance has plateaued at many sites
• Meanwhile, compute capabilities are growing toward exascale by leaps and bounds
• App developers need easy-to-use and performant I/O mechanisms to avoid bottlenecking
• NetCDF and HDF5
HDF5, NetCDF I/O Libraries

- Bindings for all major languages
- Lots of documentation and examples
- Easy to use for many HPC tools
 - Cross-platform portability, conversion of byte order to native endianism, etc.
 - HDF5 supports compression
 - User defined data blocks, organization
 - Makes it easy to author both the output code for a simulation tool and the matching input code for analysis and visualization usage
- Support integration with MPI-I/O for parallel I/O
HPC Graphics and Visualization

- Visualization:
 - VTK, VTK-m
- Rasterization: EGL and Vulkan
- Ray tracing:
 - Intel OSPRay CPU Ray Tracing Framework
 - NVIDIA OptiX GPU Ray Tracing Framework
 - Research: NVIDIA VisRTX Framework
Library “DOs”

- Do use standardized, interoperable library APIs
- Do use libraries to exploit GPU accelerators, new hardware features, new algorithms
- Do use high level APIs, abstractions, allow library freedom to use most efficient back-end solver
- Do use batched APIs for large numbers of small size problems
- Do use Autotuning and JIT when workload is repeated and overheads can be amortized
Library “DON’Ts”

- Don’t use a library without considering whether it creates an avoidable obstacle to software compilation, redistribution, or usages
- Don’t use a library or framework that harms long-term portability for short-term gain, always leave yourself an “out” for future systems
- Don’t continue using a library indefinitely -- periodically do a “bake-off” to see how it compares with other state-of-the-art choices
Keep and Eye Out For

• New state-of-the-art libraries and frameworks arising from DOE Exascale Computing Project funding
• Ongoing advances by major library developers, hardware vendors
• Evolving and improving interoperability, compatibility APIs to ease porting
Questions?