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GPU Computing 
• GPUs evolved from graphics toward general purpose 

data-parallel workloads 

• GPUs are commodity devices, omnipresent in modern 
computers (millions sold per week) 

• Massively parallel hardware, well suited to 
throughput-oriented workloads, streaming data far 
too large for CPU caches 

• Programming tools allow software to be written in 
various dialects of familiar C/C++/Fortran and 
integrated into legacy software 

• GPU algorithms are often multicore-friendly due to 
attention paid to data locality and data-parallel 
work decomposition 
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What Makes GPUs Compelling? 

• Massively parallel hardware architecture:  

– Tens of wide SIMD-oriented stream processing compute 

units (“SMs” in NVIDIA nomenclature) 

– Tens of thousands of threads running on  thousands of 

ALUs, special fctn units 

– Large register files, fast on-chip and die-stacked memory 

systems 

• Example: NVIDIA Tesla V100 (Volta) Peak Perf:  

– 7.5 TFLOPS FP64,   15 TFLOPS FP32 

– 120 TFLOPS Tensor unit (FP16/FP32 mix) 

– 900 GB/sec memory bandwidth (HBM2) 

 

 

 

http://www.nvidia.com/object/volta-architecture-whitepaper.html 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Peak Arithmetic Performance Trend 
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Peak Memory Bandwidth Trend 
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Evolution of GPUs Over Multiple Generations 
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Other Benefits of GPUs 

• 2019: 22 of the top of 25 Green500 systems           

are GPU-accelerated (Tesla V100 or P100) 

– Increased GFLOPS/watt power efficiency 

– Increased compute power per unit volume 

• Desktop workstations can incorporate the same 

types of GPUs found in clouds, clusters, and 

supercomputers 

• GPUs can be upgraded without new OS version, 

license fees, etc. 
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Sounds Great!  What Don’t GPUs Do? 

• GPUs don’t accelerate serial code… 

• GPUs don’t run your operating system…you still 

need a CPU for that… 

• GPUs don’t accelerate your InfiniBand card… 

• GPUs don’t make disk I/O faster… 

…and… 

• GPUs don’t make Amdahl’s Law 

magically go away… 
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Heterogeneous Computing 

• Use processors with complementary 

capabilities for best overall performance 

• GPUs of today are effective accelerators 

that depend on the “host” system for  OS 

and resource management, I/O, etc… 

• GPU-accelerated programs are therefore 

programs that run on “heterogeneous 

computing systems” consisting of a mix 

of processors (at least CPU+GPU) 
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Complementarity of Typical CPU and GPU           

Hardware Architectures 

CPU: Cache heavy,              
low latency, per-thread 

performance, small core counts  

GPU: ALU heavy, 
massively parallel, 

throughput-oriented 
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Exemplary Heterogeneous  

Computing Challenges 

• Tuning, adapting, or developing software for 

multiple processor types 

• Decomposition of problem(s) and load balancing 

work across heterogeneous resources for best 

overall performance and work-efficiency 

• Managing data placement in disjoint memory 

systems with varying performance attributes 

• Transferring data between processors, memory 

systems, interconnect, and I/O devices 

• … 
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Heterogeneous Compute Node 

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations 

Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten. 

Journal of Parallel Computing, 40:86-99, 2014. 

http://dx.doi.org/10.1016/j.parco.2014.03.009 

• Dense PCIe-based         

multi-GPU compute node 

• Application would ideally 

exploit all of the CPU, 

GPU, and I/O resources 

concurrently… 

 (I/O devs not shown) 

 

 

~12GB/s 
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Major Approaches For Programming 

Hybrid Architectures 

• Use drop-in libraries in place of CPU-only libraries 

– Little or no code development 

– Examples: MAGMA, BLAS-variants, FFT libraries, etc. 

– Speedups limited by Amdahl’s Law and overheads associated 

with data movement between CPUs and GPU accelerators 

• Generate accelerator code as a variant of CPU source, e.g. 

using OpenMP and OpenACC directives, and similar 

• Write lower-level accelerator-specific code, e.g. using 

CUDA, OpenCL, other approaches 
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Simplified GPU-Accelerated Application 

Adaptation and Development Cycle 

1. Use drop-in GPU libraries, e.g. BLAS, FFT, … 

2. Profile application, identify opportunities for 

massive data-parallelism 

3. Migrate well-suited data-parallel work to GPUs 

– Run data-parallel work, e.g. loop nests on GPUs 

– Exploit high bandwidth memory systems 

– Exploit massively parallel arithmetic hardware 

– Minimize host-GPU data transfers 

4. Go back to step 2… 

– Observe Amdahl’s Law, adjust CPU-GPU workloads… 
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What Runs on a GPU? 

• GPUs run data-parallel programs called 

“kernels” 

• GPUs are managed by host CPU thread(s): 

– Create a CUDA / OpenCL / OpenACC context 

– Manage GPU memory allocations/properties 

– Host-GPU and GPU-GPU (peer to peer) 

transfers 

– Launch GPU kernels 

– Query GPU status 

– Handle runtime errors 
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How Do I Write GPU Kernels? 

• Directive-based parallelism (OpenACC): 

– Annotate existing source code loop nests with directives 

that allow a compiler to automatically generate data-

parallel kernels 

– Same source code targets multiple processors 

• Explicit parallelism (CUDA, OpenCL) 

– Write data parallel kernels, explicitly map range of 

independent work items to GPU threads and groups 

– Explicit control over specialized on-chip memory 

systems, low-level parallel synchronization, reductions 
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Process for Writing CUDA Kernels 

• Data-parallel loop nests are unrolled into a 

large batch of independent work items 

that can execute concurrently 

• Work items are mapped onto GPU 

hardware threads using multidimensional 

grids and blocks of threads that execute on 

stream processing units (SMs) 

• Programmer manages data placement in 

GPU memory systems, access patterns, and 

data dependencies 
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CUDA Grid, Block, Thread Decomposition 

Padding arrays can optimize global 
memory performance 

1-D, 2-D, or 3-D  Grid of Thread Blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

… 

1-D, 2-D, or 3-D 
Computational Domain 

1-D, 2-D, 3-D 
thread block: 
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Overview of Throughput-Oriented 

GPU Hardware Architecture 

• GPUs have small on-chip caches 

• Main memory latency (several hundred clock cycles!) is 

tolerated through hardware multithreading – overlap 

memory transfer latency with execution of other work 

• When a GPU thread stalls on a memory operation, the 

hardware immediately switches context to a ready thread 

• Effective latency hiding requires saturating the GPU with 

lots of work – tens of thousands of independent work 

items 
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Avoid Output Conflicts,  

Conversion of Scatter to Gather 

• Many CPU codes contain algorithms that “scatter” 
outputs to memory, to reduce arithmetic 

• Scattered output can create bottlenecks for GPU 
performance due write conflicts among hundreds or 
thousands of threads 

• On the GPU, it is often better to: 

– do more arithmetic, in exchange for regularized output 
memory write patterns 

– convert “scatter” algorithms to “gather” approaches 

– Use data “privatization” to reduce the scope of potentially 
conflicting outputs, and to leverage special on-chip 
memory systems and data reduction instructions 
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GPU Technology Conference Presentations  

 
See the latest announcements about GPU 

hardware, libraries, and programming tools 

• https://www.nvidia.com/en-us/gtc/ 

• https://www.nvidia.com/en-us/gtc/topics/ 
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Questions? 
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Petascale Computing Institute, 

National Center for Supercomputing Applications,  

University of Illinois at Urbana-Champaign 
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An Approach to Writing CUDA Kernels  
• Find an algorithm that can expose substantial parallelism, 

we’ll ultimately need thousands of independent threads… 

• Identify most appropriate GPU memory systems to store 

data used by kernel, considering its access pattern 

• Can trade-offs be made to exchange arithmetic for fewer 

memory accesses or more parallelism? 

– Though counterintuitive, some past successes resulted from this 

– “Brute force” methods that expose significant parallelism do 

surprisingly well on GPUs 

• Analyze the real-world use cases for the problem and 

design or select a specialized kernel for the problem sizes 

that will be heavily used 
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Getting Performance From GPUs 

• Don’t worry about counting arithmetic operations until 

you have nothing else left to do… 

• GPUs provide tremendous memory bandwidth, but even 

so, memory bandwidth often ends up being the 

performance limiter 

• Keep/reuse data in registers as long as possible 

• The main consideration when programming GPUs is 

accessing memory efficiently, and storing operands in 

the most appropriate memory system according to data 

size and access pattern 
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CUDA Work Abstraction 

• Work is expressed as a multidimensional 

array of independent work items called 

“threads” – not the same thing as a CPU 

thread 

• CUDA Kernels can be thought of as telling 

a GPU to compute all iterations of a set of 

nested loops concurrently 

• Threads are dynamically scheduled onto 

hardware according to a hierarchy of thread 

groupings 
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NVIDIA Kepler GPU Streaming Multiprocessor - SMX 

GPC GPC GPC GPC 

1536KB 

Level 2 

Cache 

SMX SMX 

Tex Unit 

48 KB  Tex + Read-only Data Cache 

64 KB L1 Cache / Shared Memory 

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

16 × Execution block = 

 192 SP, 64 DP,  

32 SFU, 32 LDST 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

 Graphics Processor 

         Cluster 

GPC GPC GPC GPC 
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CUDA Work Abstractions: 

 Grids, Thread Blocks, Threads 

1-D, 2-D, or 3-D Grid of Thread Blocks: 

0,0 0,1 

1,0 1,1 

… 

… 

… 

… 

… 

1-D, 2-D, 3-D 
thread block: 

SM 

Thread blocks are 
scheduled onto pool 
of GPU SMs… 
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Basic CUDA Kernel Syntax 

• __global__ tells the nvcc compiler to generate 

kernel code that can run on the GPU: 

  __global__ void MyKernel(int myparams, ...) { 

• Read-only kernel variables: 

– blockIdx.x thread’s index within its block 

– blockDim.x block’s index within the grid 

– gridDim.x number of blocks in the grid 

• Kernels can be launched by host or GPU itself: 

MyKernel<<<GridDims, BlockDims>>>(parms); 
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CUDA Grid, Block, Thread Decomposition 

Padding arrays can optimize global 
memory performance 

1-D, 2-D, or 3-D  Grid of Thread Blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

… 

1-D, 2-D, or 3-D 
Computational Domain 

1-D, 2-D, 3-D 
thread block: 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Indexing Work 
• Within a CUDA kernel: 

– Grid: gridDim.[xyz] 

– Block: blockDim.[xyz] and blockIdx.[xyz] 

– Thread: threadIdx.[xyz] 

1 2 … 255 0 1 2 … 255 0 1 2 … 255 0 

gridDim.x == 1024 

blockIdx.x==0 blockIdx.x==1 blockIdx.x==1023 

… 

threadIdx.x threadIdx.x threadIdx.x 

GlobalThreadIndex= (blockIdx.x * blockDim.x) + threadIdx.x;  

blockDim.x == 256 1 2 … 255 0 
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Indexing Work 
• Example CUDA kernel with 1-D Indexing: 

__global__ void cuda_add(float *c, float *a, float *b) { 

  int idx = (blockIdx.x * blockDim.x) + threadIdx.x;  

  c[idx] = a[idx] + b[idx]; 

} 

1 2 … 255 0 1 2 … 255 0 1 2 … 255 0 

gridDim.x == 1024 

blockIdx.x==0 blockIdx.x==1 blockIdx.x==1023 

… 

threadIdx.x threadIdx.x threadIdx.x 
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What if Work Size Isn’t an Integer Multiple 

of the Thread Block Size? 

• Grid size must be rounded up to account for final 

partially-full thread block: 

 GridSZ = (N + BlockSZ - 1) / BlockSZ 

• Threads must check if they are “in bounds”: 

__global__ void cuda_add(float *c, float *a, float *b, int N) { 

    int idx = (blockIdx.x * blockDim.x) + threadIdx.x;  

    if (idx < N) { 

        c[idx] = a[idx] + b[idx]; 

    } 

} 
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Running a GPU kernel: 
int sz = N * sizeof(float); 

… 

cudaMalloc((void**) &a_gpu, sz); 

cudaMemcpy(a_gpu, a, sz, cudaMemcpyHostToDevice); 

… // do the same for ‘b_gpu’, allocate ‘c_gpu’ 

int Bsz = 256; // 1-D thread block size 

cuda_add<<<(N+Bsz-1)/Bsz,  Bsz>>>(c, a, b); 

cudaDeviceSynchronize(); // make CPU wait for completion 

... 

cudaMemcpy(c, c_gpu, sz, cudaMemcpyDeviceToHost); 

cudaFree(a_gpu); 

… // free ‘b_gpu’, and ‘c_gpu’… 
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CUDA Explicit GPU Memory Allocation  

and Data Transfer APIs 
• cudaMalloc ( void** devPtr, size_t size ) 

– Create a GPU memory allocation 

– Works just like malloc() except it affects GPU memory 

– Pointer returned is a GPU virtual address that isn’t directly 

accessible on the host, so memory must be populated with data using 

cudaMemcpy*() calls… 

• cudaMemcpy ( void* dst, const void* src, size_t count,        

                          cudaMemcpyKind kind )  

– Perform Host-GPU or GPU-GPU DMA transfer 

– The “kind” parameter tells the runtime which memory systems the 

source and destination addresses refer to 

• cudaFree( void * ) 

– Destroy any GPU memory allocation 
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CUDA Managed (Automated Transfers) 

 GPU Memory Allocation API 
• cudaMallocManaged ( T** devPtr, size_t size ) 

– GPU, CUDA driver, and runtime system manage the memory 

allocation, automatically performing host-GPU DMA transfers when 

needed as the host or device read/write memory 

– Reduces the need for explicit management of  data transfers and 

frees programmers to focus on other aspects of  GPU algorithm 

development unless/until there is a need to achieve performance that 

the automatic management approach cannot achieve by itself 

– Performs best on the latest GPU hardware 

– A Code Ninja can beat automated management, but it’s an excellent 

way to do early development and prototyping 

• cudaFree( void * ) 

– Destroy any GPU memory allocation 
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Example CUDA Stream of Execution: 

Explicit Data Transfers 

cudaMemcpy(gin, hin, insz, cudaMemcpyHostToDevice); 

cudaMemcpy(hout, gout, osz, cudaMemcpyDeviceToHost); 

cudaMalloc((void**) &gin, insz); 

MyKernel<<<GridSZ, BlockSZ>>>(gin, gout); 

cudaMalloc((void**) &gout, osz); 

cudaFree(gin); 

cudaFree(gout); 

hin=malloc(insz);  hout=malloc(osz);  DoCPUInitStuff(hin); 

free(hin);  free(hout);  DoCPUFinishStuff(hout) 
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free(hin);  free(hout);  DoCPUFinishStuff(out) 

hin=malloc(insz);  hout=malloc(osz);  DoCPUInitStuff(in); 

Example CUDA Stream of Execution: 

Managed Memory, w/ Implicit Data Transfers 

cudaMemcpy(gin, hin, insz, cudaMemcpyHostToDevice) 

cudaMemcpy(hout, gout, osz, cudaMemcpyDeviceToHost) 

MyKernel<<<GridSZ, BlockSZ>>>(in, out); 

cudaMallocManaged((void**) &in, insz); 

cudaMallocManaged((void**) &out, osz); 

cudaFree(in); 

cudaFree(out); 
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Example CUDA Stream of Execution: 

Managed Memory, w/ Implicit Data Transfers 

cudaMallocManaged((void**) &in, insz) 

MyKernel<<<GridSZ, BlockSZ>>>(in, out); 

cudaMallocManaged((void**) &out, osz) 

DoCPUInitStuff(in); 

 DoCPUFinishStuff(out) 

cudaFree(in); 

cudaFree(out); 

cudaDeviceSynchronize(); // for Kepler/Maxwell GPUs 
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Additional Reference Materials: 
• https://devblogs.nvidia.com/parallelforall/even-easier-

introduction-cuda/ 

• http://docs.nvidia.com/cuda/cuda-c-programming-guide 

• The CUDA Handbook: A Comprehensive Guide to GPU 

Programming 

– https://www.amazon.com/CUDA-Handbook-Comprehensive-

Guide-Programming/dp/0321809467 

• Programming Massively Parallel Processors: A Hands-on 

Approach (Third Edition) 

– https://www.amazon.com/Programming-Massively-Parallel-

Processors-Hands/dp/0128119861 
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Questions? 
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Scaling in a Heterogeneous Environment with GPUs 

CUDA Programming 2:  

GPU Thread Execution and Memory Systems 

John E. Stone 

Theoretical and Computational Biophysics Group 

Beckman Institute for Advanced Science and Technology 

University of Illinois at Urbana-Champaign 

http://www.ks.uiuc.edu/~johns/ 

 

Scaling to Petascale Institute, 

National Center for Supercomputing Applications,  

University of Illinois at Urbana-Champaign 
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Getting Performance From GPUs 

• Don’t worry (much) about counting arithmetic 

operations…at least until you have nothing else left to do 

• GPUs provide tremendous memory bandwidth, but even 

so, memory bandwidth often ends up being the 

performance limiter 

• Keep/reuse data in registers as long as possible 

• The main consideration when programming GPUs is 

accessing memory efficiently, and storing operands in 

the most appropriate memory system according to data 

size and access pattern 
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GPU Thread Block Execution  

• Thread blocks are decomposed onto 

hardware in 32-thread “warps” 

• Hardware execution is scheduled in 

units of warps – an SM can execute 

warps from several thread blocks 

• Warps run in SIMD-style execution: 

– All threads execute the same 

instruction in lock-step  

– If one thread stalls, the entire warp 

stalls… 

– A branch taken by any thread has to 

be taken by all threads...  

 (divergence is undesirable) 

1-D, 2-D, 3-D 
thread block: 

SM 

Thread blocks are 
multiplexed onto 
pool of GPU SMs… 
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GPU On-Board Global Memory 
• GPU arithmetic rates dwarf memory bandwidth 

• For old Kepler K40 hardware: 

– ~4.3 FP32 TFLOPS vs. ~288 GB/sec 

– The ratio is roughly 60 FLOPS per memory 

reference for single-precision floating point 

• Peak performance achieved with “coalesced” 

memory access patterns – patterns that result in a 

single hardware memory transaction for a SIMD 

“warp” – a contiguous group of 32 threads 
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Memory Coalescing 

• Oversimplified explanation: 

– Threads in a warp perform a read/write operation that can be 

serviced in a single hardware transaction 

– New GPUs are much more flexible than old ones 

– If all threads in a warp read from a contiguous region that’s    

32 items of 4, 8, or 16 bytes in size, that’s an example of a 

coalesced access 

– Multiple threads reading the same data are handled by a 

hardware broadcast (can provide memory bandwidth 

amplification when exploited in a kernel) 

– Writes are similar, but multiple writes to the same location 

yield undefined results 
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CUDA Grid/Block/Thread Padding 

Padding arrays out to full blocks 
optimizes global memory 
performance by guaranteeing 
memory coalescing 

1-D, 2-D, or 3-D Grid of Thread Blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

… 

1-D, 2-D, or 3-D 
Computational Domain 

1-D, 2-D, 3-D 
thread block: 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Using the CPU to Optimize GPU Performance 

• GPU performs best when the work evenly divides 

into the number of threads/processing units 

• Optimization strategy to consider:  

– Use the CPU to “regularize” the GPU workload 

– Maybe use fixed-size bin data structures, with “empty” 

slots skipped or producing zeroed out results 

– Handle exceptional or irregular work units on the CPU; 

GPU processes the bulk of the work concurrently 

– On average, the GPU is kept work-efficient and highly 

occupied, attaining a high fraction of peak performance 
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GPU Thread Block Execution  

• Thread blocks are decomposed onto 

hardware in 32-thread “warps” 

• Hardware execution is scheduled in 

units of warps – an SM can execute 

warps from several thread blocks 

• Warps run in SIMD-style execution: 

– All threads execute the same 

instruction in lock-step  

– If one thread stalls, the entire warp 

stalls… 

– A branch taken by any thread has to 

be taken by all threads...  

 (divergence is undesirable) 

1-D, 2-D, 3-D 
thread block: 

SM 

Thread blocks are 
multiplexed onto 
pool of GPU SMs… 
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GPU Warp Branch Divergence 

• Branch divergence: when not all threads take 

the same branch,  the entire warp has to 

execute both sides of the branch  

• GPU hardware blocks memory writes from 

disabled threads in the “if then” branch, then 

inverts all thread enable states and runs the 

“else” branch 

• GPU hardware detects warp reconvergence 

and then runs normally... 

• Divergence is an issue for all SIMD hardware 

designs… 

• GPUs benefit from a completely hardware-

based implementation 

1-D, 2-D, 3-D 
thread block: 

SM 

Thread blocks are 
multiplexed onto 
pool of GPU SMs… 
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GPU Thread “Occupancy” 
• GPU hardware designed to oversubscribe ALUs with lots of 

threads, thereby tolerating very long memory latencies 

without large on-chip caches 

• Occupancy refers to the degree to which the GPUs warp 

schedulers are “full” of threads 

• High occupancy often (but not always) improves latency hiding, 

which is often (but not always) better for performance 

• Sometimes it is possible to achieve good performance even with 

relatively low occupancy, via schemes that reuse registers, 

increase work-efficiency, instruction-level parallelism, etc. 

• Occupancy is limited by a kernel’s register use, shared memory 

requirement, block size, and the available number of blocks in a 

grid – Explore CUDA Occupancy Calculator Spreadsheet! 
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Off-GPU Memory Accesses 

• Direct access or transfer to/from host memory or 

peer GPU memory  

– Zero-copy behavior for accesses within kernel 

– Accesses become PCIe transactions 

– Overlap kernel execution with memory accesses 

• faster if accesses are coalesced 

• slower if not coalesced or multiple writes or multiple reads 

that miss the small GPU caches 

• Host-mapped memory 

– cudaHostAlloc() – allocate GPU-accessible host 

memory 



NIH BTRC for Macromolecular Modeling and Bioinformatics 

http://www.ks.uiuc.edu/ 

Beckman Institute, 
 U. Illinois at Urbana-Champaign 

Off-GPU Memory Accesses 

• Unified Virtual Addressing (UVA) 

– CUDA driver ensures that all GPUs in the system use 

unique non-overlapping ranges of virtual addresses 

which are also distinct from host VAs 

– CUDA decodes target memory space automatically 

from the pointer 

– Greatly simplifies code for: 

• GPU accesses to mapped host memory 

• Peer-to-Peer GPU accesses/transfers 

• MPI accesses to GPU memory buffers 

• Leads toward Unified Virtual Memory (UVM) 
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Page Locked (Pinned) Host Memory 

• Allocates host memory that is marked unmoveable in 

the OS VM system, so hardware can safely DMA 

to/from it 

• Enables Host-GPU DMA transfers that approach full 

PCIe bandwidth: 

– PCIe 2.x   6 GB/s 

– PCIe 3.x 12 GB/s 

• Enables full overlap of Host-GPU DMA and 

simultaneous kernel execution 

• Enables simultaneous bidirectional DMAs to/from host  
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GPU PCI-Express DMA 

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations 

Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten. 

Journal of Parallel Computing, 40:86-99, 2014. 

http://dx.doi.org/10.1016/j.parco.2014.03.009 
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IBM S822LC w/ NVLink 1 .0 

“Minsky” 
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GPU On-Chip Memory Systems 
• GPU arithmetic rates dwarf global memory 

bandwidth 

• GPUs include multiple fast on-chip memories to 

help narrow the gap: 

– Registers 

– Constant memory (64KB) 

– Shared memory (64KB / 48KB / 16KB, varies…) 

– Read-only data cache / Texture cache (~48KB) 

• Hardware-assisted 1-D, 2-D, 3-D spatial locality 

• Hardware range clamping, type conversion, interpolation 
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NVIDIA Kepler GPU Streaming Multiprocessor - SMX 

GPC GPC GPC GPC 

1536KB 

Level 2 

Cache 

SMX SMX 

Tex Unit 

48 KB  Tex + Read-only Data Cache 

64 KB L1 Cache / Shared Memory 

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

16 × Execution block = 

 192 SP, 64 DP,  

32 SFU, 32 LDST 

SP SP SP DP 
SFU LDST 

SP SP SP DP 

 Graphics Processor 

         Cluster 

GPC GPC GPC GPC 
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GPU Thread Block Collective Operations 

• Threads within the same thread block 

can communicate with each other in 

fast on-chip shared memory 

• Once scheduled on an SM, thread 

blocks run until completion 

• Because the order of thread block 

execution is arbitrary and blocks 

cannot be stopped, they cannot 

communicate or synchronize with 

other thread blocks (*) 

• (*) Atomic memory ops are an 

exception wrt/ communication  

1-D, 2-D, 3-D 
thread block: 

SM 

Thread blocks are 
multiplexed onto 
pool of GPU SMs… 
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Communication Between Threads 

• Threads in a warp or a thread 

block can write/read shared 

memory, global memory 

• Barrier synchronizations, 

and memory fences are used 

to ensure memory stores 

complete before peer(s) 

read… 

• Atomic ops can enable 

limited communication 

between thread blocks 

= 

+= 

+= 

+= 

Shared Memory Parallel 
Reduction Example 
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Data Layout Issues and GPU Memory Systems 
Array of Structures (AOS) vs.  

Structure of Arrays (SOA) 

• AOS: 

typedef struct { 

  float x; 

  float y;  

  float z; 

} myvec; 

myvec aos[1024]; 

aos[threadIdx.x].x = 0; 

aos[threadIdx.x].y = 0; 

• SOA 

typedef struct { 

  float x[1024]; 

  float y[1024]; 

  float z[1024]; 

} myvecs; 

myvecs soa; 

soa.x[threadIdx.x] = 0; 

soa.y[threadIdx.x] = 0; 
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Use of Atomic Memory Ops 

• Independent thread blocks can access shared 

counters, flags safely without deadlock 

when used properly 

– Allow a thread to inform peers to early-exit 

– Enable a thread block to determine that it is the 

last one running, and that it should do 

something special, e.g. a reduction of partial 

results from all thread blocks 
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Communication Between Threads in a Warp 

• On GPUs since Kepler, 

neighboring threads in a warp 

can exchange data with each 

other using shuffle instructions 

between registers 

• Shuffle outperforms shared 

memory, and leaves shared 

memory available for other data 

• CUDA 9: Cooperative Groups 

supercedes this approach… 

= 

+= 

+= 

+= 

Intra-Warp Parallel 
Reduction with Shuffle,         
No Shared Memory Use 
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Avoid Output Conflicts,  

Conversion of Scatter to Gather 

• Many CPU codes contain algorithms that “scatter” 
outputs to memory, to reduce arithmetic 

• Scattered output can create bottlenecks for GPU 
performance due to bank conflicts 

• On the GPU, it’s often better to do more 
arithmetic, in exchange for a regularized output 
pattern, or to convert “scatter” algorithms to 
“gather” approaches 
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Avoid Output Conflicts:  

Privatization Schemes 
• Privatization: use of private work areas for workers 

– Avoid/reduce the need for thread synchronization barriers 

– Avoid/reduce the need atomic increment/decrement 
operations during work, use parallel reduction at the end… 

• By working in separate memory buffers, workers 
avoid read/modify/write conflicts of various kinds 

• Huge GPU thread counts make it impractical to 
privatize data on a per-thread basis, so GPUs must use 
coarser granularity: warps, thread-blocks 

• Use of the on-chip shared memory local to each SM 
can often be considered a form of privatization 
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Example: avoiding output conflicts when 

summing numbers among threads in a block 

N-way output conflict:                 
Correct results require costly barrier 
synchronizations or atomic memory 
operations ON EVERY ADD to prevent 
threads from overwriting each other… 

Simple Parallel reduction: 
no output conflicts,      
Log2(N) barriers 

+= 

= 

+= 

+= 

+= 

+= 

Accumulate sums in thread-
local registers before doing any 

reduction among threads 
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Additional Reference Materials: 
• https://devblogs.nvidia.com/parallelforall/even-easier-

introduction-cuda/ 

• http://docs.nvidia.com/cuda/cuda-c-programming-guide 

• The CUDA Handbook: A Comprehensive Guide to GPU 

Programming 

– https://www.amazon.com/CUDA-Handbook-Comprehensive-

Guide-Programming/dp/0321809467 

• Programming Massively Parallel Processors: A Hands-on 

Approach (Third Edition) 

– https://www.amazon.com/Programming-Massively-Parallel-

Processors-Hands/dp/0128119861 
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Questions? 
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When to Use CUDA vs. 

OpenACC 
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Major Approaches For Programming 

Hybrid Architectures 

• Use drop-in libraries in place of CPU-only libraries 
– Little or no code development 

– Examples: MAGMA, BLAS-variants, FFT libraries, etc. 

– Speedups limited by Amdahl’s Law and overheads 
associated with data movement between CPUs and GPU 
accelerators 

• Generate accelerator code as a variant of CPU source, 
e.g. using OpenMP and OpenACC directives, and 
similar 

• Write lower-level accelerator-specific code, e.g. using 
CUDA, OpenCL, other approaches 

 



Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics 

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu 

Challenges Adapting Large Software Systems 

for State-of-the-Art Hardware Platforms 

• Initial focus on key computational kernels eventually gives 
way to the need to optimize an ocean of less critical 
routines, due to observance of Amdahl’s Law 

• Even though these less critical routines might be easily 
ported to CUDA or similar, the sheer number of routines 
often poses a challenge 

• Need a low-cost approach for getting “some” speedup 
out of these second-tier routines 

• In many cases, it is completely sufficient to achieve 
memory-bandwidth-bound GPU performance with an 
existing algorithm 
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Amdahl’s Law and Role of Directives 

• Initial partitioning of algorithm(s) between host CPUs and 
accelerators is typically based on initial performance 
balance point 

• Time passes and accelerators get MUCH faster… 

• Formerly harmless CPU code ends up limiting overall 
performance! 

• Need to address bottlenecks in increasing fraction of code 

• Directives provide low cost, low burden, approach to 
improve incrementally vs. status quo  

• Directives are complementary to lower level 
approaches such as CPU intrinsics, CUDA, OpenCL, and 
they all need to coexist and interoperate very gracefully 
alongside each other 
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Multilevel Summation on the GPU: 

An Amdahl’s Law Example From Our Previous Work 

Computational steps CPU (s) w/ GPU (s) Speedup 

Short-range cutoff 480.07 14.87 32.3 

Long-range anterpolation 0.18 

restriction 0.16 

lattice cutoff 49.47 1.36 36.4 

prolongation 0.17 

interpolation 3.47 

Total 533.52 20.21 26.4 

Performance profile for 0.5 Å map of potential for  1.5 M atoms. 

Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280. 

Accelerate  short-range cutoff  and  lattice cutoff  parts 
 

Multilevel summation of electrostatic potentials using graphics processing units. 

D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009. 
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How Do Directives Fit In? 

• Single code base is typically maintained 

• Almost “deceptively” simple to use 

• Easy route for incremental, “gradual buy in”  

• Rapid development cycle, but success often 
follows minor refactoring and/or changes to 
data structure layout 

• Higher abstraction level than other techniques 
for programming accelerators 

• In many cases, performance can be “good 
enough” due to memory-bandwidth limits, or 
based on return on developer time or some 
other metric 
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Why Not Use Directives Exclusively? 

• Some projects do…but: 
– Back-end runtimes for compiler directives sometimes 

have unexpected extra overheads that could be a 
showstopper in critical algorithm steps 

– High abstraction level may mean lack of access to 
hardware features exposed only via CUDA or other 
lower level APIs 

– Fortunately, interoperability APIs enable directive-
based approaches to be used side-by-side with hand-
coded kernels, libraries, etc. 

– Presently, sometimes-important capabilities like JIT 
compilation of runtime-generated kernels only 
exist within lower level APIs such as CUDA and 
OpenCL 
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What Do Existing Accelerated 

Applications Look Like? 

I’ll provide examples from digging into modern versions of 
VMD that have already incorporated acceleration in a deep 
way. 

 

Questions: 

• How much code needs to be “fast”, or “faster” 

• What fraction runs on accelerator now? 

• Using directives, how much more coverage can be 
achieved, and with what speedup? 

• Do I lose access to any points of execution or resource 
control that are critical for the application’s performance? 
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Example of VMD Module Connectivity 

• Early progress focused 
acceleration efforts on handful of 
high level analysis routines that 
were the most computationally 
demanding 

• Future hardware requires 
pervasive acceleration 

• Top image shows script interface 
links to top level analytical 
routines 

• Bottom image shows links among 
subset of data analytics 
algorithms to leaf-node 
functions 
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VMD Software Decomposition 

Type of Code 

C++

Graphics

CUDA

C

CPU
intrinsics
TclBind

PyBind

• Computational code is 50% of VMD 
core 

• Hand-written accelerator + vectorized 
code (CUDA + CPU intrinsics) 
represents only 14% of core 
computational code 
– 20,000 lines of CUDA 

– 3,100 lines of intrinics 

• Percent coverage of leaf-node 
analytical functions is lower yet 

• Need to evolve VMD toward high 
coverage of performance-critical 
analysis code with fine-grained 
parallelism on accelerators and 
vectorization 
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Questions? 

 


