
NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Scaling in a Heterogeneous

Environment with GPUs:

GPU Architecture, Concepts, and Strategies

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/~johns/

Petascale Computing Institute,

National Center for Supercomputing Applications,

University of Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing
• GPUs evolved from graphics toward general purpose

data-parallel workloads

• GPUs are commodity devices, omnipresent in modern
computers (millions sold per week)

• Massively parallel hardware, well suited to
throughput-oriented workloads, streaming data far
too large for CPU caches

• Programming tools allow software to be written in
various dialects of familiar C/C++/Fortran and
integrated into legacy software

• GPU algorithms are often multicore-friendly due to
attention paid to data locality and data-parallel
work decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

What Makes GPUs Compelling?

• Massively parallel hardware architecture:

– Tens of wide SIMD-oriented stream processing compute

units (“SMs” in NVIDIA nomenclature)

– Tens of thousands of threads running on thousands of

ALUs, special fctn units

– Large register files, fast on-chip and die-stacked memory

systems

• Example: NVIDIA Tesla V100 (Volta) Peak Perf:

– 7.5 TFLOPS FP64, 15 TFLOPS FP32

– 120 TFLOPS Tensor unit (FP16/FP32 mix)

– 900 GB/sec memory bandwidth (HBM2)

http://www.nvidia.com/object/volta-architecture-whitepaper.html

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Peak Arithmetic Performance Trend

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Peak Memory Bandwidth Trend

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign http://www.nvidia.com/object/volta-architecture-whitepaper.html

Evolution of GPUs Over Multiple Generations

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Other Benefits of GPUs

• 2019: 22 of the top of 25 Green500 systems

are GPU-accelerated (Tesla V100 or P100)

– Increased GFLOPS/watt power efficiency

– Increased compute power per unit volume

• Desktop workstations can incorporate the same

types of GPUs found in clouds, clusters, and

supercomputers

• GPUs can be upgraded without new OS version,

license fees, etc.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Sounds Great! What Don’t GPUs Do?

• GPUs don’t accelerate serial code…

• GPUs don’t run your operating system…you still

need a CPU for that…

• GPUs don’t accelerate your InfiniBand card…

• GPUs don’t make disk I/O faster…

…and…

• GPUs don’t make Amdahl’s Law

magically go away…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Heterogeneous Computing

• Use processors with complementary

capabilities for best overall performance

• GPUs of today are effective accelerators

that depend on the “host” system for OS

and resource management, I/O, etc…

• GPU-accelerated programs are therefore

programs that run on “heterogeneous

computing systems” consisting of a mix

of processors (at least CPU+GPU)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Complementarity of Typical CPU and GPU

Hardware Architectures

CPU: Cache heavy,
low latency, per-thread

performance, small core counts

GPU: ALU heavy,
massively parallel,

throughput-oriented

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Exemplary Heterogeneous

Computing Challenges

• Tuning, adapting, or developing software for

multiple processor types

• Decomposition of problem(s) and load balancing

work across heterogeneous resources for best

overall performance and work-efficiency

• Managing data placement in disjoint memory

systems with varying performance attributes

• Transferring data between processors, memory

systems, interconnect, and I/O devices

• …

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Heterogeneous Compute Node

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations

Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten.

Journal of Parallel Computing, 40:86-99, 2014.

http://dx.doi.org/10.1016/j.parco.2014.03.009

• Dense PCIe-based

multi-GPU compute node

• Application would ideally

exploit all of the CPU,

GPU, and I/O resources

concurrently…

 (I/O devs not shown)

~12GB/s

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Major Approaches For Programming

Hybrid Architectures

• Use drop-in libraries in place of CPU-only libraries

– Little or no code development

– Examples: MAGMA, BLAS-variants, FFT libraries, etc.

– Speedups limited by Amdahl’s Law and overheads associated

with data movement between CPUs and GPU accelerators

• Generate accelerator code as a variant of CPU source, e.g.

using OpenMP and OpenACC directives, and similar

• Write lower-level accelerator-specific code, e.g. using

CUDA, OpenCL, other approaches

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Simplified GPU-Accelerated Application

Adaptation and Development Cycle

1. Use drop-in GPU libraries, e.g. BLAS, FFT, …

2. Profile application, identify opportunities for

massive data-parallelism

3. Migrate well-suited data-parallel work to GPUs

– Run data-parallel work, e.g. loop nests on GPUs

– Exploit high bandwidth memory systems

– Exploit massively parallel arithmetic hardware

– Minimize host-GPU data transfers

4. Go back to step 2…

– Observe Amdahl’s Law, adjust CPU-GPU workloads…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

What Runs on a GPU?

• GPUs run data-parallel programs called

“kernels”

• GPUs are managed by host CPU thread(s):

– Create a CUDA / OpenCL / OpenACC context

– Manage GPU memory allocations/properties

– Host-GPU and GPU-GPU (peer to peer)

transfers

– Launch GPU kernels

– Query GPU status

– Handle runtime errors

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

How Do I Write GPU Kernels?

• Directive-based parallelism (OpenACC):

– Annotate existing source code loop nests with directives

that allow a compiler to automatically generate data-

parallel kernels

– Same source code targets multiple processors

• Explicit parallelism (CUDA, OpenCL)

– Write data parallel kernels, explicitly map range of

independent work items to GPU threads and groups

– Explicit control over specialized on-chip memory

systems, low-level parallel synchronization, reductions

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Process for Writing CUDA Kernels

• Data-parallel loop nests are unrolled into a

large batch of independent work items

that can execute concurrently

• Work items are mapped onto GPU

hardware threads using multidimensional

grids and blocks of threads that execute on

stream processing units (SMs)

• Programmer manages data placement in

GPU memory systems, access patterns, and

data dependencies

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Grid, Block, Thread Decomposition

Padding arrays can optimize global
memory performance

1-D, 2-D, or 3-D Grid of Thread Blocks:

0,0 0,1

1,0 1,1

…

… …

…

…

1-D, 2-D, or 3-D
Computational Domain

1-D, 2-D, 3-D
thread block:

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Overview of Throughput-Oriented

GPU Hardware Architecture

• GPUs have small on-chip caches

• Main memory latency (several hundred clock cycles!) is

tolerated through hardware multithreading – overlap

memory transfer latency with execution of other work

• When a GPU thread stalls on a memory operation, the

hardware immediately switches context to a ready thread

• Effective latency hiding requires saturating the GPU with

lots of work – tens of thousands of independent work

items

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Avoid Output Conflicts,

Conversion of Scatter to Gather

• Many CPU codes contain algorithms that “scatter”
outputs to memory, to reduce arithmetic

• Scattered output can create bottlenecks for GPU
performance due write conflicts among hundreds or
thousands of threads

• On the GPU, it is often better to:

– do more arithmetic, in exchange for regularized output
memory write patterns

– convert “scatter” algorithms to “gather” approaches

– Use data “privatization” to reduce the scope of potentially
conflicting outputs, and to leverage special on-chip
memory systems and data reduction instructions

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Technology Conference Presentations

See the latest announcements about GPU

hardware, libraries, and programming tools

• https://www.nvidia.com/en-us/gtc/

• https://www.nvidia.com/en-us/gtc/topics/

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Questions?

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Scaling in a Heterogeneous Environment with GPUs

CUDA Programming: Fundamental Abstractions

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/~johns/

Petascale Computing Institute,

National Center for Supercomputing Applications,

University of Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

An Approach to Writing CUDA Kernels
• Find an algorithm that can expose substantial parallelism,

we’ll ultimately need thousands of independent threads…

• Identify most appropriate GPU memory systems to store

data used by kernel, considering its access pattern

• Can trade-offs be made to exchange arithmetic for fewer

memory accesses or more parallelism?

– Though counterintuitive, some past successes resulted from this

– “Brute force” methods that expose significant parallelism do

surprisingly well on GPUs

• Analyze the real-world use cases for the problem and

design or select a specialized kernel for the problem sizes

that will be heavily used

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Getting Performance From GPUs

• Don’t worry about counting arithmetic operations until

you have nothing else left to do…

• GPUs provide tremendous memory bandwidth, but even

so, memory bandwidth often ends up being the

performance limiter

• Keep/reuse data in registers as long as possible

• The main consideration when programming GPUs is

accessing memory efficiently, and storing operands in

the most appropriate memory system according to data

size and access pattern

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Work Abstraction

• Work is expressed as a multidimensional

array of independent work items called

“threads” – not the same thing as a CPU

thread

• CUDA Kernels can be thought of as telling

a GPU to compute all iterations of a set of

nested loops concurrently

• Threads are dynamically scheduled onto

hardware according to a hierarchy of thread

groupings

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NVIDIA Kepler GPU Streaming Multiprocessor - SMX

GPC GPC GPC GPC

1536KB

Level 2

Cache

SMX SMX

Tex Unit

48 KB Tex + Read-only Data Cache

64 KB L1 Cache / Shared Memory

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache

SP SP SP DP
SFU LDST

SP SP SP DP

16 × Execution block =

 192 SP, 64 DP,

32 SFU, 32 LDST

SP SP SP DP
SFU LDST

SP SP SP DP

 Graphics Processor

 Cluster

GPC GPC GPC GPC

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Work Abstractions:

 Grids, Thread Blocks, Threads

1-D, 2-D, or 3-D Grid of Thread Blocks:

0,0 0,1

1,0 1,1

…

…

…

…

…

1-D, 2-D, 3-D
thread block:

SM

Thread blocks are
scheduled onto pool
of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Basic CUDA Kernel Syntax

• __global__ tells the nvcc compiler to generate

kernel code that can run on the GPU:

 __global__ void MyKernel(int myparams, ...) {

• Read-only kernel variables:

– blockIdx.x thread’s index within its block

– blockDim.x block’s index within the grid

– gridDim.x number of blocks in the grid

• Kernels can be launched by host or GPU itself:

MyKernel<<<GridDims, BlockDims>>>(parms);

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Grid, Block, Thread Decomposition

Padding arrays can optimize global
memory performance

1-D, 2-D, or 3-D Grid of Thread Blocks:

0,0 0,1

1,0 1,1

…

… …

…

…

1-D, 2-D, or 3-D
Computational Domain

1-D, 2-D, 3-D
thread block:

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Indexing Work
• Within a CUDA kernel:

– Grid: gridDim.[xyz]

– Block: blockDim.[xyz] and blockIdx.[xyz]

– Thread: threadIdx.[xyz]

1 2 … 255 0 1 2 … 255 0 1 2 … 255 0

gridDim.x == 1024

blockIdx.x==0 blockIdx.x==1 blockIdx.x==1023

…

threadIdx.x threadIdx.x threadIdx.x

GlobalThreadIndex= (blockIdx.x * blockDim.x) + threadIdx.x;

blockDim.x == 256 1 2 … 255 0

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Indexing Work
• Example CUDA kernel with 1-D Indexing:

__global__ void cuda_add(float *c, float *a, float *b) {

 int idx = (blockIdx.x * blockDim.x) + threadIdx.x;

 c[idx] = a[idx] + b[idx];

}

1 2 … 255 0 1 2 … 255 0 1 2 … 255 0

gridDim.x == 1024

blockIdx.x==0 blockIdx.x==1 blockIdx.x==1023

…

threadIdx.x threadIdx.x threadIdx.x

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

What if Work Size Isn’t an Integer Multiple

of the Thread Block Size?

• Grid size must be rounded up to account for final

partially-full thread block:

 GridSZ = (N + BlockSZ - 1) / BlockSZ

• Threads must check if they are “in bounds”:

__global__ void cuda_add(float *c, float *a, float *b, int N) {

 int idx = (blockIdx.x * blockDim.x) + threadIdx.x;

 if (idx < N) {

 c[idx] = a[idx] + b[idx];

 }

}

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Running a GPU kernel:
int sz = N * sizeof(float);

…

cudaMalloc((void**) &a_gpu, sz);

cudaMemcpy(a_gpu, a, sz, cudaMemcpyHostToDevice);

… // do the same for ‘b_gpu’, allocate ‘c_gpu’

int Bsz = 256; // 1-D thread block size

cuda_add<<<(N+Bsz-1)/Bsz, Bsz>>>(c, a, b);

cudaDeviceSynchronize(); // make CPU wait for completion

...

cudaMemcpy(c, c_gpu, sz, cudaMemcpyDeviceToHost);

cudaFree(a_gpu);

… // free ‘b_gpu’, and ‘c_gpu’…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Explicit GPU Memory Allocation

and Data Transfer APIs
• cudaMalloc (void** devPtr, size_t size)

– Create a GPU memory allocation

– Works just like malloc() except it affects GPU memory

– Pointer returned is a GPU virtual address that isn’t directly

accessible on the host, so memory must be populated with data using

cudaMemcpy*() calls…

• cudaMemcpy (void* dst, const void* src, size_t count,

 cudaMemcpyKind kind)

– Perform Host-GPU or GPU-GPU DMA transfer

– The “kind” parameter tells the runtime which memory systems the

source and destination addresses refer to

• cudaFree(void *)

– Destroy any GPU memory allocation

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Managed (Automated Transfers)

 GPU Memory Allocation API
• cudaMallocManaged (T** devPtr, size_t size)

– GPU, CUDA driver, and runtime system manage the memory

allocation, automatically performing host-GPU DMA transfers when

needed as the host or device read/write memory

– Reduces the need for explicit management of data transfers and

frees programmers to focus on other aspects of GPU algorithm

development unless/until there is a need to achieve performance that

the automatic management approach cannot achieve by itself

– Performs best on the latest GPU hardware

– A Code Ninja can beat automated management, but it’s an excellent

way to do early development and prototyping

• cudaFree(void *)

– Destroy any GPU memory allocation

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example CUDA Stream of Execution:

Explicit Data Transfers

cudaMemcpy(gin, hin, insz, cudaMemcpyHostToDevice);

cudaMemcpy(hout, gout, osz, cudaMemcpyDeviceToHost);

cudaMalloc((void**) &gin, insz);

MyKernel<<<GridSZ, BlockSZ>>>(gin, gout);

cudaMalloc((void**) &gout, osz);

cudaFree(gin);

cudaFree(gout);

hin=malloc(insz); hout=malloc(osz); DoCPUInitStuff(hin);

free(hin); free(hout); DoCPUFinishStuff(hout)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

free(hin); free(hout); DoCPUFinishStuff(out)

hin=malloc(insz); hout=malloc(osz); DoCPUInitStuff(in);

Example CUDA Stream of Execution:

Managed Memory, w/ Implicit Data Transfers

cudaMemcpy(gin, hin, insz, cudaMemcpyHostToDevice)

cudaMemcpy(hout, gout, osz, cudaMemcpyDeviceToHost)

MyKernel<<<GridSZ, BlockSZ>>>(in, out);

cudaMallocManaged((void**) &in, insz);

cudaMallocManaged((void**) &out, osz);

cudaFree(in);

cudaFree(out);

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example CUDA Stream of Execution:

Managed Memory, w/ Implicit Data Transfers

cudaMallocManaged((void**) &in, insz)

MyKernel<<<GridSZ, BlockSZ>>>(in, out);

cudaMallocManaged((void**) &out, osz)

DoCPUInitStuff(in);

 DoCPUFinishStuff(out)

cudaFree(in);

cudaFree(out);

cudaDeviceSynchronize(); // for Kepler/Maxwell GPUs

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Additional Reference Materials:
• https://devblogs.nvidia.com/parallelforall/even-easier-

introduction-cuda/

• http://docs.nvidia.com/cuda/cuda-c-programming-guide

• The CUDA Handbook: A Comprehensive Guide to GPU

Programming

– https://www.amazon.com/CUDA-Handbook-Comprehensive-

Guide-Programming/dp/0321809467

• Programming Massively Parallel Processors: A Hands-on

Approach (Third Edition)

– https://www.amazon.com/Programming-Massively-Parallel-

Processors-Hands/dp/0128119861

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Questions?

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Scaling in a Heterogeneous Environment with GPUs

CUDA Programming 2:

GPU Thread Execution and Memory Systems

John E. Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/~johns/

Scaling to Petascale Institute,

National Center for Supercomputing Applications,

University of Illinois at Urbana-Champaign

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Getting Performance From GPUs

• Don’t worry (much) about counting arithmetic

operations…at least until you have nothing else left to do

• GPUs provide tremendous memory bandwidth, but even

so, memory bandwidth often ends up being the

performance limiter

• Keep/reuse data in registers as long as possible

• The main consideration when programming GPUs is

accessing memory efficiently, and storing operands in

the most appropriate memory system according to data

size and access pattern

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Thread Block Execution

• Thread blocks are decomposed onto

hardware in 32-thread “warps”

• Hardware execution is scheduled in

units of warps – an SM can execute

warps from several thread blocks

• Warps run in SIMD-style execution:

– All threads execute the same

instruction in lock-step

– If one thread stalls, the entire warp

stalls…

– A branch taken by any thread has to

be taken by all threads...

 (divergence is undesirable)

1-D, 2-D, 3-D
thread block:

SM

Thread blocks are
multiplexed onto
pool of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU On-Board Global Memory
• GPU arithmetic rates dwarf memory bandwidth

• For old Kepler K40 hardware:

– ~4.3 FP32 TFLOPS vs. ~288 GB/sec

– The ratio is roughly 60 FLOPS per memory

reference for single-precision floating point

• Peak performance achieved with “coalesced”

memory access patterns – patterns that result in a

single hardware memory transaction for a SIMD

“warp” – a contiguous group of 32 threads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Memory Coalescing

• Oversimplified explanation:

– Threads in a warp perform a read/write operation that can be

serviced in a single hardware transaction

– New GPUs are much more flexible than old ones

– If all threads in a warp read from a contiguous region that’s

32 items of 4, 8, or 16 bytes in size, that’s an example of a

coalesced access

– Multiple threads reading the same data are handled by a

hardware broadcast (can provide memory bandwidth

amplification when exploited in a kernel)

– Writes are similar, but multiple writes to the same location

yield undefined results

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

CUDA Grid/Block/Thread Padding

Padding arrays out to full blocks
optimizes global memory
performance by guaranteeing
memory coalescing

1-D, 2-D, or 3-D Grid of Thread Blocks:

0,0 0,1

1,0 1,1

…

… …

…

…

1-D, 2-D, or 3-D
Computational Domain

1-D, 2-D, 3-D
thread block:

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Using the CPU to Optimize GPU Performance

• GPU performs best when the work evenly divides

into the number of threads/processing units

• Optimization strategy to consider:

– Use the CPU to “regularize” the GPU workload

– Maybe use fixed-size bin data structures, with “empty”

slots skipped or producing zeroed out results

– Handle exceptional or irregular work units on the CPU;

GPU processes the bulk of the work concurrently

– On average, the GPU is kept work-efficient and highly

occupied, attaining a high fraction of peak performance

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Thread Block Execution

• Thread blocks are decomposed onto

hardware in 32-thread “warps”

• Hardware execution is scheduled in

units of warps – an SM can execute

warps from several thread blocks

• Warps run in SIMD-style execution:

– All threads execute the same

instruction in lock-step

– If one thread stalls, the entire warp

stalls…

– A branch taken by any thread has to

be taken by all threads...

 (divergence is undesirable)

1-D, 2-D, 3-D
thread block:

SM

Thread blocks are
multiplexed onto
pool of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Warp Branch Divergence

• Branch divergence: when not all threads take

the same branch, the entire warp has to

execute both sides of the branch

• GPU hardware blocks memory writes from

disabled threads in the “if then” branch, then

inverts all thread enable states and runs the

“else” branch

• GPU hardware detects warp reconvergence

and then runs normally...

• Divergence is an issue for all SIMD hardware

designs…

• GPUs benefit from a completely hardware-

based implementation

1-D, 2-D, 3-D
thread block:

SM

Thread blocks are
multiplexed onto
pool of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Thread “Occupancy”
• GPU hardware designed to oversubscribe ALUs with lots of

threads, thereby tolerating very long memory latencies

without large on-chip caches

• Occupancy refers to the degree to which the GPUs warp

schedulers are “full” of threads

• High occupancy often (but not always) improves latency hiding,

which is often (but not always) better for performance

• Sometimes it is possible to achieve good performance even with

relatively low occupancy, via schemes that reuse registers,

increase work-efficiency, instruction-level parallelism, etc.

• Occupancy is limited by a kernel’s register use, shared memory

requirement, block size, and the available number of blocks in a

grid – Explore CUDA Occupancy Calculator Spreadsheet!

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Off-GPU Memory Accesses

• Direct access or transfer to/from host memory or

peer GPU memory

– Zero-copy behavior for accesses within kernel

– Accesses become PCIe transactions

– Overlap kernel execution with memory accesses

• faster if accesses are coalesced

• slower if not coalesced or multiple writes or multiple reads

that miss the small GPU caches

• Host-mapped memory

– cudaHostAlloc() – allocate GPU-accessible host

memory

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Off-GPU Memory Accesses

• Unified Virtual Addressing (UVA)

– CUDA driver ensures that all GPUs in the system use

unique non-overlapping ranges of virtual addresses

which are also distinct from host VAs

– CUDA decodes target memory space automatically

from the pointer

– Greatly simplifies code for:

• GPU accesses to mapped host memory

• Peer-to-Peer GPU accesses/transfers

• MPI accesses to GPU memory buffers

• Leads toward Unified Virtual Memory (UVM)

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Page Locked (Pinned) Host Memory

• Allocates host memory that is marked unmoveable in

the OS VM system, so hardware can safely DMA

to/from it

• Enables Host-GPU DMA transfers that approach full

PCIe bandwidth:

– PCIe 2.x 6 GB/s

– PCIe 3.x 12 GB/s

• Enables full overlap of Host-GPU DMA and

simultaneous kernel execution

• Enables simultaneous bidirectional DMAs to/from host

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU PCI-Express DMA

Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations

Michael J. Hallock, John E. Stone, Elijah Roberts, Corey Fry, and Zaida Luthey-Schulten.

Journal of Parallel Computing, 40:86-99, 2014.

http://dx.doi.org/10.1016/j.parco.2014.03.009

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

IBM S822LC w/ NVLink 1 .0

“Minsky”

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU On-Chip Memory Systems
• GPU arithmetic rates dwarf global memory

bandwidth

• GPUs include multiple fast on-chip memories to

help narrow the gap:

– Registers

– Constant memory (64KB)

– Shared memory (64KB / 48KB / 16KB, varies…)

– Read-only data cache / Texture cache (~48KB)

• Hardware-assisted 1-D, 2-D, 3-D spatial locality

• Hardware range clamping, type conversion, interpolation

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

NVIDIA Kepler GPU Streaming Multiprocessor - SMX

GPC GPC GPC GPC

1536KB

Level 2

Cache

SMX SMX

Tex Unit

48 KB Tex + Read-only Data Cache

64 KB L1 Cache / Shared Memory

3-12 GB DRAM Memory w/ ECC 64 KB Constant Cache

SP SP SP DP
SFU LDST

SP SP SP DP

16 × Execution block =

 192 SP, 64 DP,

32 SFU, 32 LDST

SP SP SP DP
SFU LDST

SP SP SP DP

 Graphics Processor

 Cluster

GPC GPC GPC GPC

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Thread Block Collective Operations

• Threads within the same thread block

can communicate with each other in

fast on-chip shared memory

• Once scheduled on an SM, thread

blocks run until completion

• Because the order of thread block

execution is arbitrary and blocks

cannot be stopped, they cannot

communicate or synchronize with

other thread blocks (*)

• (*) Atomic memory ops are an

exception wrt/ communication

1-D, 2-D, 3-D
thread block:

SM

Thread blocks are
multiplexed onto
pool of GPU SMs…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Communication Between Threads

• Threads in a warp or a thread

block can write/read shared

memory, global memory

• Barrier synchronizations,

and memory fences are used

to ensure memory stores

complete before peer(s)

read…

• Atomic ops can enable

limited communication

between thread blocks

=

+=

+=

+=

Shared Memory Parallel
Reduction Example

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Data Layout Issues and GPU Memory Systems
Array of Structures (AOS) vs.

Structure of Arrays (SOA)

• AOS:

typedef struct {

 float x;

 float y;

 float z;

} myvec;

myvec aos[1024];

aos[threadIdx.x].x = 0;

aos[threadIdx.x].y = 0;

• SOA

typedef struct {

 float x[1024];

 float y[1024];

 float z[1024];

} myvecs;

myvecs soa;

soa.x[threadIdx.x] = 0;

soa.y[threadIdx.x] = 0;

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Use of Atomic Memory Ops

• Independent thread blocks can access shared

counters, flags safely without deadlock

when used properly

– Allow a thread to inform peers to early-exit

– Enable a thread block to determine that it is the

last one running, and that it should do

something special, e.g. a reduction of partial

results from all thread blocks

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Communication Between Threads in a Warp

• On GPUs since Kepler,

neighboring threads in a warp

can exchange data with each

other using shuffle instructions

between registers

• Shuffle outperforms shared

memory, and leaves shared

memory available for other data

• CUDA 9: Cooperative Groups

supercedes this approach…

=

+=

+=

+=

Intra-Warp Parallel
Reduction with Shuffle,
No Shared Memory Use

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Avoid Output Conflicts,

Conversion of Scatter to Gather

• Many CPU codes contain algorithms that “scatter”
outputs to memory, to reduce arithmetic

• Scattered output can create bottlenecks for GPU
performance due to bank conflicts

• On the GPU, it’s often better to do more
arithmetic, in exchange for a regularized output
pattern, or to convert “scatter” algorithms to
“gather” approaches

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Avoid Output Conflicts:

Privatization Schemes
• Privatization: use of private work areas for workers

– Avoid/reduce the need for thread synchronization barriers

– Avoid/reduce the need atomic increment/decrement
operations during work, use parallel reduction at the end…

• By working in separate memory buffers, workers
avoid read/modify/write conflicts of various kinds

• Huge GPU thread counts make it impractical to
privatize data on a per-thread basis, so GPUs must use
coarser granularity: warps, thread-blocks

• Use of the on-chip shared memory local to each SM
can often be considered a form of privatization

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example: avoiding output conflicts when

summing numbers among threads in a block

N-way output conflict:
Correct results require costly barrier
synchronizations or atomic memory
operations ON EVERY ADD to prevent
threads from overwriting each other…

Simple Parallel reduction:
no output conflicts,
Log2(N) barriers

+=

=

+=

+=

+=

+=

Accumulate sums in thread-
local registers before doing any

reduction among threads

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Additional Reference Materials:
• https://devblogs.nvidia.com/parallelforall/even-easier-

introduction-cuda/

• http://docs.nvidia.com/cuda/cuda-c-programming-guide

• The CUDA Handbook: A Comprehensive Guide to GPU

Programming

– https://www.amazon.com/CUDA-Handbook-Comprehensive-

Guide-Programming/dp/0321809467

• Programming Massively Parallel Processors: A Hands-on

Approach (Third Edition)

– https://www.amazon.com/Programming-Massively-Parallel-

Processors-Hands/dp/0128119861

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Questions?

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

When to Use CUDA vs.

OpenACC

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Major Approaches For Programming

Hybrid Architectures

• Use drop-in libraries in place of CPU-only libraries
– Little or no code development

– Examples: MAGMA, BLAS-variants, FFT libraries, etc.

– Speedups limited by Amdahl’s Law and overheads
associated with data movement between CPUs and GPU
accelerators

• Generate accelerator code as a variant of CPU source,
e.g. using OpenMP and OpenACC directives, and
similar

• Write lower-level accelerator-specific code, e.g. using
CUDA, OpenCL, other approaches

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Challenges Adapting Large Software Systems

for State-of-the-Art Hardware Platforms

• Initial focus on key computational kernels eventually gives
way to the need to optimize an ocean of less critical
routines, due to observance of Amdahl’s Law

• Even though these less critical routines might be easily
ported to CUDA or similar, the sheer number of routines
often poses a challenge

• Need a low-cost approach for getting “some” speedup
out of these second-tier routines

• In many cases, it is completely sufficient to achieve
memory-bandwidth-bound GPU performance with an
existing algorithm

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Amdahl’s Law and Role of Directives

• Initial partitioning of algorithm(s) between host CPUs and
accelerators is typically based on initial performance
balance point

• Time passes and accelerators get MUCH faster…

• Formerly harmless CPU code ends up limiting overall
performance!

• Need to address bottlenecks in increasing fraction of code

• Directives provide low cost, low burden, approach to
improve incrementally vs. status quo

• Directives are complementary to lower level
approaches such as CPU intrinsics, CUDA, OpenCL, and
they all need to coexist and interoperate very gracefully
alongside each other

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Multilevel Summation on the GPU:

An Amdahl’s Law Example From Our Previous Work

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.

Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

Multilevel summation of electrostatic potentials using graphics processing units.

D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

How Do Directives Fit In?

• Single code base is typically maintained

• Almost “deceptively” simple to use

• Easy route for incremental, “gradual buy in”

• Rapid development cycle, but success often
follows minor refactoring and/or changes to
data structure layout

• Higher abstraction level than other techniques
for programming accelerators

• In many cases, performance can be “good
enough” due to memory-bandwidth limits, or
based on return on developer time or some
other metric

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Why Not Use Directives Exclusively?

• Some projects do…but:
– Back-end runtimes for compiler directives sometimes

have unexpected extra overheads that could be a
showstopper in critical algorithm steps

– High abstraction level may mean lack of access to
hardware features exposed only via CUDA or other
lower level APIs

– Fortunately, interoperability APIs enable directive-
based approaches to be used side-by-side with hand-
coded kernels, libraries, etc.

– Presently, sometimes-important capabilities like JIT
compilation of runtime-generated kernels only
exist within lower level APIs such as CUDA and
OpenCL

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

What Do Existing Accelerated

Applications Look Like?

I’ll provide examples from digging into modern versions of
VMD that have already incorporated acceleration in a deep
way.

Questions:

• How much code needs to be “fast”, or “faster”

• What fraction runs on accelerator now?

• Using directives, how much more coverage can be
achieved, and with what speedup?

• Do I lose access to any points of execution or resource
control that are critical for the application’s performance?

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

Example of VMD Module Connectivity

• Early progress focused
acceleration efforts on handful of
high level analysis routines that
were the most computationally
demanding

• Future hardware requires
pervasive acceleration

• Top image shows script interface
links to top level analytical
routines

• Bottom image shows links among
subset of data analytics
algorithms to leaf-node
functions

Biomedical Technology Research Center for Macromolecular Modeling and Bioinformatics

Beckman Institute, University of Illinois at Urbana-Champaign - www.ks.uiuc.edu

VMD Software Decomposition

Type of Code

C++

Graphics

CUDA

C

CPU
intrinsics
TclBind

PyBind

• Computational code is 50% of VMD
core

• Hand-written accelerator + vectorized
code (CUDA + CPU intrinsics)
represents only 14% of core
computational code
– 20,000 lines of CUDA

– 3,100 lines of intrinics

• Percent coverage of leaf-node
analytical functions is lower yet

• Need to evolve VMD toward high
coverage of performance-critical
analysis code with fine-grained
parallelism on accelerators and
vectorization

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Questions?

