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The Geometry of Data: Welcome!

• Toy Example 
• Neural Network Basics 
• Model Training 
• Projections 

• MNIST Data Set 
• Neural Network 
• Convolution Neural Network 

• Outreach 
• Current Work on Blue Waters
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The Geometry of Data: Welcome!
• Inspired by Christopher Olah blog post 

• Neural Networks, Manifolds, and Topology 
(https://colah.github.io/posts/2014-03-NN-
Manifolds-Topology/) 
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Toy Example Problem
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Seven Segment Display

Representations 
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Toy Example Problem
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Seven Segment Display

Malfunctioning: 2 or 8 ? 

• Simple way to add noise 
•  

• Nonlinear way to add noise 

•  
• Selection Bias 

•  Model Training 

•  Model Validation/Deployed 

• What can a neural network do for us?
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Input Hidden Hidden Output

Neural Network, A Basic Exercise

Input:  Weights:  

•  is a 5x1 vector in this example 
• there are 5 “Hidden Units” in the first layer of this example 
•  is applied pointwise to   

•                                                          or 

•  is soft max, ,  is the number of classifications 

•  is often called a “Dense Layer” 

•  along with the choice of  completely describe the ’th “Dense Layer” 
• 10 classifications, model output is a 10 dimensional vector 

• Final classification is read as “argmax” of output
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Neural Network, A Basic Exercise
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Input Vector
Dense Dense

Linear Output

Apply 2 layer NN to Seven Segment Display 
The crux is finding the right ’sα*
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Machine Learning Is Just Curve Fitting

• Simple regression 

• Goal: Find m,b 

• With data set  

• Let the error be 

•  

• Minimize  with respect to  and . 
• In practice we consider more general  

• Many more ’s

y =  𝑚 ∙ 𝑥 + 𝑏 

{(𝑥𝑖, 𝑦𝑖)} 
𝑖=1,..,𝑛

𝑅 =  
𝑛

∑
𝑖=1

[(𝑦𝑖 − (𝑚 ∙ 𝑥𝑖 + 𝑏)]2

𝑅 𝑚 𝑏
𝑦 = 𝑓(𝑥)

α
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Gradient Descent
• Searching for minimum of 

•  

•  
•  and  is a sum over  

• Update parameters 

•  

•  Learning Rate 
• Some Other Loss Function 

•
Root Mean Square,  

• Cross Entropy, 

R = ∑
i

[yi − fαt
(xi)]

2

∇R = ⟨Rα1
, Rα2

, . . . , Rαn
⟩

𝑅 𝛻𝑅  𝑖

R (α t+1) = R (α t + γ ∇R)
𝛾 :

R =
n

∑
i

[(yi − fα*
(xi)]2

R̃ = −
M

∑
i

(yi)log (fα*
(xi))
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Stochastic Gradient Decent

• Single training example,  , Sum over only one training example 

•  

•  

•  Learning Rate 
• Choose next , (Shuffled training set) 
• SGD with mini batches 
• Many training example,  , Sum over many training example 

• Batch Size or Mini Batch Size (This gets ambiguous with distributed training) 
• SGD often outperforms traditional GD, want small batches. 

• https://arxiv.org/abs/1609.04836, On Large-Batch Training … Sharp Minima  
• https://arxiv.org/abs/1711.04325, Extremely Large ... in 15 Minutes

(𝑥𝑖, 𝑦𝑖)
∇R(xi,yi) = ⟨Rα1

, Rα2
, . . . , Rαn⟩(xi,yi)

R(xi,yi) (α t+1) = R (α t + γ∇R)(xi,yi)

𝛾 :

(𝑥𝑖+1, 𝑦𝑖+1)

(𝑥𝑖, 𝑦𝑖)
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Neural Network, A Basic Exercise
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• Training the model yields a 
sequence of weights  

• Investigate Batch Size: 128, 
256, 512, 1024 

• We choose the 2 “most active” 
’s and sample them 

• “most active” is the  norm 
across training steps

α*
l2

Input Vector
Dense Dense

Linear Output
0   3     
4 



Neural Network, A Basic Exercise
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Input Vector
Dense Dense

Linear Output
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• Each layer has an output vector for each input 
• Input Vec: 7x1 
• Layer 1 Out Vec: 5x1 
• Layer 2 Out Vec: 3x1 

• We need a way to visualize higher dimensional vectors

Hidden Units:5 Hidden Units:3

V5×1 V3×1



Projecting To Lower Dimension: Principle Component Analysis (PCA)
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• Finds a basis which maximizes variance 
• Notice, this is a linear transformation 



PCA on Seven Segment Voltage Vector
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Little Noise

Lots of Noise

Nonlinear Noise

Lots of Nonlinear 
Noise



Neural Network, A Basic Exercise
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Input Vector
Dense Dense

Linear Output 0   

V5×1 V3×1• Hidden Units: 20,10 
• Accuracy: Aprox 90% 
• Loss: Low



Neural Network, A Basic Exercise
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Input Vector
Dense Dense

Linear Output 0   

V5×1 V3×1

• Hidden Units: 5,3 
• Accuracy: aprox 60% 
• Loss: Large



Neural Network, A Basic Exercise
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Input Vector
Dense Dense

Linear Output 0   

V5×1 V3×1

• Hidden Units: 200,100 
• Accuracy: Aprox 97% 
• Loss: Low



• Standard Dataset of Hand Written Arabic Numeral 
• 28x28 Pixels 
• 1 channel 

• Lets try this NN again

MNIST Data Set
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Input Vector
Dense Dense

Linear Output

PCA MNIST Flattened Image Vectors



MNIST Example
• MNIST is a dataset of hand written 

Arabic Numerals (Images) 
• Same NN as Seven Segment Display
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MNIST Example
• MNIST is a dataset of hand written Arabic Numerals 

(Images) 
• Same NN as Seven Segment Display
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Input Vector
Dense Dense

Linear Output



• For two functions,  

•

•  is the kernel to 
• Above is a rolling average 

𝑓(𝑥),  𝑔(𝑥)

(𝑓 ∗ 𝑔)(𝑥) =  
∞

∫
−∞

𝑓(𝑦)𝑔(𝑥 − 𝑦) 𝑑𝑦

𝑔 𝑓

MNIST Example: Convolutions!

21

Convolutions 
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Demo 
http://setosa.io/ev/image-kernels/ 

http://setosa.io/ev/image-kernels/
http://setosa.io/ev/image-kernels/


MNIST Example: Convolutional Neural Net (CNN)
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Input Vector
Conv2d

MaxPool Softmax Output
Conv2d

MaxPool
Dense

• Let's Consider 2 model architectures and compare. 
•  are filters (or kernels) 

• Trainable Parameters
ϕi

Input Vector
Conv2d

Softmax Output
Dense



MNIST Example: CNN
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Input Vector
Conv2d

Softmax Output
Dense



MNIST Example: CNN
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Input Vector
Conv2d

Softmax Output
Dense

Reshape



MNIST Example: CNN
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Input Vector
Conv2d

MaxPool Softmax Output
Conv2d

MaxPool
Dense

Reshape



Take Aways

• Large Batch Size has affect on loss surface 
• Empirically: Large batch size results in poor SGD minimizer 

• Layers “Project” data between manifolds 
• SGD finds the weights that do this in a useful way 
• Good models “separate data” 

• Finding “Goldilocks” models 
• Not too much transform - Not enough dimensions to wiggle in 
• Not to little transform - Danger of over fitting
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Now what!?



Faux Model Example
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Image Input Classification 
Output



Distributed Training, Data Distributed
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Distributed Training, Data Distributed

30UNCLASSIFIED



Distributed Training, Data Distributed
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Where do we go from here?
• This is a solicitation! 
• Survey says NGA is interested (Future Topics) 

• CNN’s, GANs 
• Transformers, Image Segmentation 

• Looking for teams to deploy your ML training onto BW 
• What we learn from these methods is transferable to 

other architectures 
• Contact 

• help+bw@ncsa.illinois.edu  
• Aaron Saxton, saxton@illinois.edu 
• Brett Bode, brett@illinois.edu  
• Greg Bauer, gbauer@illinois.edu  
• Bill Kramer, wtkramer@illinois.edu
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NFI Overview

Requesting Access to Blue Waters

• Access to Blue Waters starts with the submission of a two-page request describing your project and its resource 
requirements. 

• Projects can be small (50,000 Node Hours (NH)) to extreme (many million NH) 
• If your project is new to HPC start with a small request, additional time can be quickly added later once the need is 

demonstrated. 
• Include the type and amount of support you may need from BWs staff to get your project running. The Blue 

Waters team is available to advise on these points. 
• Questions 

• NCSA/Illinois: email help+bw@ncsa.Illinois.edu 
• NGA POCs: 

• Chuck Crittenden, Geomatics - Source, Charles.D.Crittenden@nga.mil 
• Kevin Dobbs, Research, Kevin.E.Dobbs.ctr@nga.mil 
• Brain Bates, Automation, Brian.F.Bates@nga.mil 
• Victor Gonzales, Research, Victor.M.Gonzalez@nga.mil
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Showcase Current Work on BW
“Arid & semi-arid tree-crown enumeration at the 50 cm scale  
Compton Tucker and Colleagues“ — Compton (Jim) Tucker, et. al. 
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Questions?
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