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Preface

About This Book

This book is part of a multivolume work entitled the AMD64
Architecture Programmer’s Manual. This table lists each volume
and its order number.

Title Order No.
Volume 1, Application Programming 24592
Volume 2, System Programming 24593
Volume 3, General-Purpose and System Instructions 24594
Volume 4, 128-Bit Media Instructions 26568
Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume (Volume 2) is intended for programmers writing
operating systems, loaders, linkers, device drivers, or system
utilities. It assumes an understanding of AMDG64 architecture
application-level programming as described in Volume 1.

This volume describes the AMDG64 architecture’s resources and
functions that are managed by system software, including
operating-mode control, memory management, interrupts and
exceptions, task and state-change management, system-
management mode (including power management), multi-
processor support, debugging, and processor initialization.

Application-programming topics are described in Volume 1.
Details about each instruction are described in volumes 3, 4,
and 5.

Contact Information

To submit questions or comments concerning this document,
contact our technical documentation staff at
AMDG64.Feedback@amd.com.
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This volume begins with an overview of system programming
and differences between the x86 and AMDG64 architectures.
This is followed by chapters that describe the following details
of system programming:

System Resources—The system registers and processor ID
(CPUID) functions.

Segmented Virtual Memory—The segmented-memory models
supported by the architecture and their associated data
structures and protection checks.

Page Translation and Protection—The page-translation
functions supported by the architecture and their associated
data structures and protection checks.

System-Management Instructions—The instructions used to
manage system functions.

Memory System—The memory-system hierarchy and its
resources and protocols, including memory-characterization,
caching, and buffering functions.

Exceptions and Interrupts—Details about the types and
causes of exceptions and interrupts, and the methods of
transferring control during these events.

Machine-Check Mechanism—The resources and functions
that support detection and handling of machine-check
errors.

System-Management Mode—The resources and functions
that support system-management mode (SMM), including
power-management functions.

128-Bit, 64-Bit, and x87 Programming—The resources and
functions that support use (by application software) and
state-saving (by the operation system) of the 128-bit media,
64-bit media, and x87 floating-point instructions.

Multiple-Processor ~Management—The features of the
instruction set and the system resources and functions that
support multiprocessing environments.

Debug and Performance Resources—The system resources and
functions that support software debugging and performance
monitoring.

XXviii
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Definitions

Terms and Notation

m Legacy Task Management—Support for the legacy hardware
multitasking functions, including register resources and
data structures.

m  Processor Initialization and Long-Mode Activation—The
methods by which system software initializes and changes
operating modes.

m  Mixing Code Across Operating Modes—Things to remember
when running programs in different operating modes.

There are appendices describing details of model-specific
registers (MSRs) and machine-check implementations.
Definitions assumed throughout this volume are listed below.
The index at the end of this volume cross-references topics
within the volume. For other topics relating to the AMDG64
architecture, see the tables of contents and indexes of the other
volumes.

Some of the following definitions assume a knowledge of the
legacy x86 architecture. See “Related Documents” on page xli
for descriptions of the legacy x86 architecture.

1011b

A binary value—in this example, a 4-bit value.
FOEAh

A hexadecimal value—in this example a 2-byte value.
[1,2)

A range that includes the left-most value (in this case, 1) but
excludes the right-most value (in this case, 2).

7-4
A bit range, from bit 7 to 4, inclusive. The high-order bit is
shown first.

128-bit media instructions

Instructions that use the 128-bit XMM registers. These are a
combination of the SSE and SSE2 instruction sets.

64-bit media instructions

Instructions that use the 64-bit MMX registers. These are
primarily a combination of MMX and 3DNow!™ instruction

Preface
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sets, with some additional instructions from the SSE and
SSE2 instruction sets.

16-bit mode

Legacy mode or compatibility mode in which a 16-bit
address size is active. See legacy mode and compatibility
mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit
address size is active. See legacy mode and compatibility
mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address
size is 64 bits and new features, such as register extensions,
are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP)
with error code of 0.

absolute

Said of a displacement that references the base of a code
segment rather than an instruction pointer. Contrast with
relative.

ASID
Address space identifier.

biased exponent

The sum of a floating-point value’s exponent and a constant
bias for a particular floating-point data type. The bias makes
the range of the biased exponent always positive, which
allows reciprocation without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

XXX
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compatibility mode
A submode of long mode. In compatibility mode, the default

address size is 32 bits, and legacy 16-bit and 32-bit
applications run without modification.

commit

To irreversibly write, in program order, an instruction’s
result to software-visible storage, such as a register
(including flags), the data cache, an internal write buffer, or
memory.

CPL
Current privilege level.

CRO-CR4

A register range, from register CRO through CR4, inclusive,
with the low-order register first.

CRO.PE =1

Notation indicating that the PE bit of the CRO register has a
value of 1.

direct

Referencing a memory location whose address is included in
the instruction’s syntax as an immediate operand. The
address may be an absolute or relative address. Compare
indirect.

dirty data

Data held in the processor’s caches or internal buffers that is
more recent than the copy held in main memory.

displacement

A signed value that is added to the base of a segment
(absolute addressing) or an instruction pointer (relative
addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

Preface
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DS:rSI

The contents of a memory location whose segment address is
in the DS register and whose offset relative to that segment
is in the rSI register.

EFER.LME =0

Notation indicating that the LME bit of the EFER register
has a value of 0.

effective address size

The address size for the current instruction after accounting
for the default address size and any address-size override
prefix.

effective operand size

The operand size for the current instruction after
accounting for the default operand size and any operand-
size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of executing
an instruction. The processor’s response to an exception
depends on the type of the exception. For all exceptions
except 128-bit media SIMD floating-point exceptions and
x87 floating-point exceptions, control is transferred to the
handler (or service routine) for that exception, as defined by
the exception’s vector. For floating-point exceptions defined
by the IEEE 754 standard, there are both masked and
unmasked responses. When unmasked, the exception
handler is called, and when masked, a default response is
provided instead of calling the handler.

FF /0

Notation indicating that FF is the first byte of an opcode,
and a subopcode in the ModR/M byte has a value of 0.

flush

An often ambiguous term meaning (1) writeback, if
modified, and invalidate, as in “flush the cache line,” or (2)
invalidate, as in “flush the pipeline,” or (3) change a value,
as in “flush to zero.”
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GDT
Global descriptor table.

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

indirect

Referencing a memory location whose address is in a
register or other memory location. The address may be an
absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

vr
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on
page xli for descriptions of the legacy x86 architecture.

legacy mode

An operating mode of the AMDG64 architecture in which
existing 16-bit and 32-bit applications and operating systems
run without modification. A processor implementation of
the AMDG64 architecture can run in either long mode or legacy
mode. Legacy mode has three submodes, real mode, protected
mode, and virtual-8086 mode.

long mode

An operating mode unique to the AMDG64 architecture. A
processor implementation of the AMD64 architecture can
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run in either long mode or legacy mode. Long mode has two
submodes, 64-bit mode and compatibility mode.

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache
memory) that is installed in a particular computer system.

mask

(1) A control bit that prevents the occurrence of a floating-
point exception from invoking an exception-handling
routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a
general-protection exception (#GP) occurs.

memory
Unless otherwise specified, main memoru.

ModRM

A byte following an instruction opcode that specifies
address calculation based on mode (Mod), register (R), and
memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand

directly, without using a ModRM or SIB byte.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions

A combination of 128-bit media instructions and 64-bit media
instructions.

octword
Same as double quadword.

XXXiv
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offset

Same as displacement.

overflow

The condition in which a floating-point number is larger in
magnitude than the largest, finite, positive or negative
number that can be represented in the data-type format
being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal
buffers. External probes originate outside the processor, and
internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode

A short name for real-address mode, a submode of legacy
mode.

relative

Referencing with a displacement (also called offset) from an
instruction pointer rather than the base of a code segment.
Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.
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To preserve compatibility with future processors, reserved
fields require special handling when read or written by
software.

Reserved fields may be further qualified as MBZ, RAZ, SBZ
or IGN (see definitions).
Software must not depend on the state of a reserved field,
nor upon the ability of such fields to return to a previously
written state.
If a reserved field is not marked with one of the above
qualifiers, software must not change the state of that field; it
must reload that field with the same values returned from a
prior read.

REX
An instruction prefix that specifies a 64-bit operand size and
provides access to additional registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies
address calculation based on scale (S), index (I), and base
(B).

SIMD
Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit
media instructions and 64-bit media instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media
instructions and 64-bit media instructions.

SSE3
Further extensions to the SSE instruction set. See 128-bit
media instructions.
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Registers

sticky bit
A bit that is set or cleared by hardware and that remains in
that state until explicitly changed by software.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in
magnitude than the smallest nonzero, positive or negative
number that can be represented in the data-type format
being used.

vector

(1) A set of integer or floating-point values, called elements,
that are packed into a single operand. Most of the 128-bit
and 64-bit media instructions use vectors as operands.
Vectors are also called packed or SIMD (single-instruction
multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to
access exception handlers. Compare exception.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

In the following list of registers, the names are used to refer
either to a given register or to the contents of that register:
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AH-DH
The high 8-bit AH, BH, CH, and DH registers. Compare
AL-DL.
AL-DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH-DH.
AL-r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and
R8B-R15B registers, available in 64-bit mode.
BP
Base pointer register.
CRn
Control register number n.
CS
Code segment register.
eAX-eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the
32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. Compare rAX-rSP.
EFER
Extended features enable register.
eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.
EFLAGS
32-bit (extended) flags register.
elP
16-bit or 32-bit instruction-pointer register. Compare rIP.
EIP
32-bit (extended) instruction-pointer register.
FLAGS
16-bit flags register.
GDTR
Global descriptor table register.
XXXviii Preface
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GPRs

General-purpose registers. For the 16-bit data size, these are
AX, BX, CX, DX, DI, SI, BP, and SP. For the 32-bit data size,
these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For
the 64-bit data size, these include RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, and R8-R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8-rl5

The 8-bit R8B-R15B registers, or the 16-bit REW-R15W
registers, or the 32-bit R8D-R15D registers, or the 64-bit
R8-R15 registers.

rAX-rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or
the 32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI,
RBP, and RSP registers. Replace the placeholder r with
nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-bit
size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.
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RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare
RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR

Task priority register (CR8), a new register introduced in
the AMDG64 architecture to speed interrupt management.

TR
Task register.

The x86 and AMDG64 architectures address memory using little-
endian byte-ordering. Multibyte values are stored with their
least-significant byte at the lowest byte address, and they are
illustrated with their least significant byte at the right side.
Strings are illustrated in reverse order, because the addresses of
their bytes increase from right to left.

xI
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1 System-Programming Overview

This entire volume is intended for system-software
developers—programmers writing operating systems, loaders,
linkers, device drivers, or utilities that require access to system
resources. These system resources are generally available only
to software running at the highest-privilege level (CPL=0), also
referred to as privileged software. Privilege levels and their
interactions are fully described in “Segment-Protection
Overview” on page 118.

This chapter introduces the basic features and capabilities of
the AMDG64 architecture that are available to system-software
developers. The concepts include:

m  The supported address forms and how memory is organized.

s How memory-management hardware makes use of the
various address forms to access memory.

m The processor operating modes, and how the memory-
management hardware supports each of those modes.

m The system-control registers used to manage system
resources.

s The interrupt and exception mechanism, and how it is used
to interrupt program execution and to report errors.

m Additional, miscellaneous features available to system
software, including support for hardware multitasking,
reporting machine-check exceptions, debugging software
problems, and optimizing software performance.

Many of the legacy features and capabilities are enhanced by
the AMDG64 architecture to support 64-bit operating systems
and applications, while providing backward-compatibility with
existing software.

1.1 Memory Model

The AMDG64 architecture memory model is designed to allow
system software to manage application software and associated
data in a secure fashion. The memory model is backward-
compatible with the legacy memory model. Hardware-
translation mechanisms are provided to map addresses between
virtual-memory space and physical-memory space. The
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translation mechanisms allow system software to relocate
applications and data transparently, either anywhere in
physical-memory space, or in areas on the system hard drive
managed by the operating system.

In long mode, the AMDG64 architecture implements a flat-
memory model. In legacy mode, the architecture implements all
legacy memory models.

The AMDG64 architecture supports address relocation. To do
this, several types of addresses are needed to completely
describe memory organization. Specifically, four types of
addresses are defined by the AMDG64 architecture:

m Logical addresses

m Effective addresses, or segment offsets, which are a portion
of the logical address.

m Linear (virtual) addresses
m  Physical addresses

Logical Addresses. A logical address is a reference into a
segmented-address space. It is comprised of the segment
selector and the effective address. Notationally, a logical
address is represented as

Logical Address = Segment Selector : Offset

The segment selector specifies an entry in either the global or
local descriptor table. The specified descriptor-table entry
describes the segment location in virtual-address space, its size,
and other characteristics. The effective address is used as an
offset into the segment specified by the selector.

Logical addresses are often referred to as far pointers. Far
pointers are used in software addressing when the segment
reference must be explicit (i.e., a reference to a segment
outside the current segment).

Effective Addresses. The offset into a memory segment is referred
to as an effective address (see “Segmentation” on page 6 for a
description of segmented memory). Effective addresses are
formed by adding together elements comprising a base value, a
scaled-index value, and a displacement value. The effective-
address computation is represented by the equation

Effective Address = Base + (Scale x Index) + Displacement

Chapter 1: System-Programming Overview
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The elements of an effective-address computation are defined
as follows:

m  Base—A value stored in any general-purpose register.
m  Scale—A positive value of 1, 2, 4, or 8.

m Index—A two’s-complement value stored in any general-
purpose register.

m  Displacement—An 8-bit, 16-bit, or 32-bit two’s-complement
value encoded as part of the instruction.

Effective addresses are often referred to as near pointers. A near
pointer is used when the segment selector is known implicitly
or when the flat-memory model is used.

Long mode defines a 64-bit effective-address length. If a
processor implementation does not support the full 64-bit
virtual-address space, the effective address must be in canonical
form (see “Canonical Address Form” on page 5).

Linear (Virtual) Addresses. The segment-selector portion of a
logical address specifies a segment-descriptor entry in either
the global or local descriptor table. The specified segment-
descriptor entry contains the segment-base address, which is
the starting location of the segment in linear-address space. A
linear address is formed by adding the segment-base address to
the effective address (segment offset), which creates a
reference to any byte location within the supported linear-
address space. Linear addresses are often referred to as virtual
addresses, and both terms are used interchangeably throughout
this document.

Linear Address = Segment Base Address + Effective Address

When the flat-memory model is used—as in 64-bit mode—a
segment-base address is treated as 0. In this case, the linear
address is identical to the effective address. In long mode,
linear addresses must be in canonical address form, as
described in “Canonical Address Form” on page 5.

Physical Addresses. A physical address is a reference into the
physical-address space, typically main memory. Physical
addresses are translated from virtual addresses using page-
translation mechanisms. See “Paging” on page 8 for
information on how the paging mechanism is used for virtual-
address to physical-address translation. When the paging
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mechanism is not enabled, the virtual (linear) address is used
as the physical address.

The AMD64 architecture organizes memory into virtual memory
and physical memory. Virtual-memory and physical-memory
spaces can be (and usually are) different in size. Generally, the
virtual-address space is much larger than physical-address
memory. System software relocates applications and data
between physical memory and the system hard disk to make it
appear that much more memory is available than really exists.
System software then uses the hardware memory-management
mechanisms to map the larger virtual-address space into the
smaller physical-address space.

Virtual Memory. Software uses virtual addresses to access
locations within the virtual-memory space. System software is
responsible for managing the relocation of applications and
data in virtual-memory space using segment-memory
management. System software is also responsible for mapping
virtual memory to physical memory through the use of page
translation. The AMD64 architecture supports different virtual-
memory sizes using the following address-translation modes:

m  Protected Mode—This mode supports 4 gigabytes of virtual-
address space using 32-bit virtual addresses.

m Long Mode—This mode supports 16 exabytes of virtual-
address space using 64-bit virtual addresses.

Physical Memory. Physical addresses are used to directly access
main memory. For a particular computer system, the size of the
available physical-address space is equal to the amount of main
memory installed in the system. The maximum amount of
physical memory accessible depends on the processor
implementation and on the address-translation mode. The
AMDG64 architecture supports varying physical-memory sizes
using the following address-translation modes:

m  Real-Address Mode—This mode, also called real mode,
supports 1 megabyte of physical-address space using 20-bit
physical addresses. This address-translation mode is
described in “Real Addressing” on page 11. Real mode is
available only from legacy mode (see “Legacy Modes” on
page 16).

m  Legacy Protected Mode—This mode supports several different
address-space sizes, depending on the translation
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1.1.3 Canonical
Address Form

mechanism used and whether extensions to those
mechanisms are enabled.

Legacy protected mode supports 4 gigabytes of physical-
address space using 32-bit physical addresses. Both segment
translation (see “Segmentation” on page6) and page
translation (see “Paging” on page 8) can be used to access
the physical address space, when the processor is running in
legacy protected mode.

When the physical-address size extensions are enabled (see
“Physical-Address Extensions (PAE) Bit” on page 149), the
page-translation mechanism can be extended to support 52-
bit physical addresses. 52-bit physical addresses allow up to
4 petabytes of physical-address space to be supported.
(Currently, the AMD64 architecture supports 40-bit
addresses in this mode, allowing up to 1 terabyte of physical-
address space to be supported.

m Long Mode—This mode is unique to the AMD64 architecture.
This mode supports up to 4 petabytes of physical-address
space using 52-bit physical addresses. Long mode requires
the use of page-translation and the physical-address size
extensions (PAE).

Long mode defines 64 bits of virtual-address space, but
processor implementations can support less. Although some
processor implementations do not use all 64 bits of the virtual
address, they all check bits 63 through the most-significant
implemented bit to see if those bits are all zeros or all ones. An
address that complies with this property is in canonical address
form. In most cases, a virtual-memory reference that is not in
canonical form causes a general-protection exception (#GP) to
occur. However, implied stack references where the stack
address is not in canonical form causes a stack exception (#SS)
to occur. Implied stack references include all push and pop
instructions, and any instruction using RSP or RBP as a base
register.

By checking canonical-address form, the AMDG64 architecture
prevents software from exploiting unused high bits of pointers
for other purposes. Software complying with canonical-address
form on a specific processor implementation can run
unchanged on long-mode implementations supporting larger
virtual-address spaces.
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1.2 Memory Management

12.1 Segmentation

Memory management consists of the methods by which
addresses generated by software are translated by
segmentation and/or paging into addresses in physical memory.
Memory management is not visible to application software. It is
handled by the system software and processor hardware.

Segmentation was originally created as a method by which
system software could isolate software processes (tasks), and
the data used by those processes, from one another in an effort
to increase the reliability of systems running multiple processes
simultaneously.

The AMDG64 architecture is designed to support all forms of
legacy segmentation. However, most modern system software
does not use the segmentation features available in the legacy
x86 architecture. Instead, system software typically handles
program and data isolation using page-level protection. For this
reason, the AMD64 architecture dispenses with multiple
segments in 64-bit mode and, instead, uses a flat-memory
model. The elimination of segmentation allows new 64-bit
system software to be coded more simply, and it supports more
efficient management of multi-processing than is possible in
the legacy x86 architecture.

Segmentation is, however, used in compatibility mode and
legacy mode. Here, segmentation is a form of base memory-
addressing that allows software and data to be relocated in
virtual-address space off of an arbitrary base address. Software
and data can be relocated in virtual-address space using one or
more variable-sized memory segments. The legacy x86
architecture provides several methods of restricting access to
segments from other segments so that software and data can be
protected from interfering with each other.

In compatibility and legacy modes, up to 16,383 unique
segments can be defined. The base-address value, segment size
(called a limit), protection, and other attributes for each
segment are contained in a data structure called a segment
descriptor. Collections of segment descriptors are held in
descriptor tables. Specific segment descriptors are referenced or
selected from the descriptor table using a segment selector
register. Six segment-selector registers are available, providing
access to as many as six segments at a time.
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Figure 1-1 shows an example of segmented memory.
Segmentation is described in Chapter 4, “Segmented Virtual

Memory.”
Virtual Address
Space
Effective Address
Descriptor Table ‘ __________________
Selectors Virtual Address
G * Limit 4&)
.................. 9
DS Base |
ES
P —— Segment
s * Limit »
Base
SS >
+ >
R Segment

513-201.eps

Figure 1-1. Segmented-Memory Model

Flat Segmentation. One special case of segmented memory is the
flat-memory model. In the legacy flat-memory model, all
segment-base addresses have a value of 0, and the segment
limits are fixed at 4 Gbytes. Segmentation cannot be disabled
but use of the flat-memory model effectively disables segment
translation. The result is a virtual address that equals the
effective address. Figure 1-2 on page 8 shows an example of the
flat-memory model.
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Software running in 64-bit mode automatically uses the flat-
memory model. In 64-bit mode, the segment base is treated as if
it were 0, and the segment limit is ignored. This allows an
effective addresses to access the full virtual-address space
supported by the processor.

Virtual Address
Space

Effective Address

A4

Virtual Address

Flat Segment

513-202.ps

Figure 1-2. Flat Memory Model

12.2 Paging

Paging allows software and data to be relocated in physical-
address space using fixed-size blocks called physical pages. The
legacy x86 architecture supports three different physical-page
sizes of 4 Kbytes, 2 Mbytes, and 4 Mbytes. As with segment
translation, access to physical pages by lesser-privileged
software can be restricted.

Page translation uses a hierarchical data structure called a
page-translation table to translate virtual pages into physical-
pages. The number of levels in the translation-table hierarchy
can be as few as one or as many as four, depending on the
physical-page size and processor operating mode. Translation
tables are aligned on 4-Kbyte boundaries. Physical pages must
be aligned on 4-Kbyte, 2-Mbyte, or 4-Mbyte boundaries,
depending on the physical-page size.

Chapter 1: System-Programming Overview
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Each table in the translation hierarchy is indexed by a portion
of the virtual-address bits. The entry referenced by the table
index contains a pointer to the base address of the next-lower-
level table in the translation hierarchy. In the case of the lowest-
level table, its entry points to the physical-page base address.
The physical page is then indexed by the least-significant bits
of the virtual address to yield the physical address.

Figure 1-3 shows an example of paged memory with three levels
in the translation-table hierarchy. Paging is described in
Chapter 5, “Page Translation and Protection.”
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Figure 1-3. Paged Memory Model

Software running in long mode is required to have page
translation enabled.
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Memory-management software can combine the use of
segmented memory and paged memory. Because segmentation
cannot be disabled, paged-memory management requires some
minimum initialization of the segmentation resources. Paging
can be completely disabled, so segmented-memory
management does not require initialization of the paging
resources.

Segments can range in size from a single byte to 4 Gbytes in
length. It is therefore possible to map multiple segments to a
single physical page and to map multiple physical pages to a
single segment. Alignment between segment and physical-page
boundaries is not required, but memory-management software
is simplified when segment and physical-page boundaries are
aligned.

The simplest, most efficient method of memory management is
the flat-memory model. In the flat-memory model, all segment
base addresses have a value of 0 and the segment limits are
fixed at 4 Gbytes. The segmentation mechanism is still used
each time a memory reference is made, but because virtual
addresses are identical to effective addresses in this model, the
segmentation mechanism is effectively ignored. Translation of
virtual (or effective) addresses to physical addresses takes
place using the paging mechanism only.

Because 64-bit mode disables segmentation, it uses a flat,
paged-memory model for memory management. The 4 Gbyte
segment limit is ignored in 64-bit mode. Figure 1-4 on page 11
shows an example of this model.

10
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Figure 1-4. 64-Bit Flat, Paged-Memory Model

124 Real Addressing

Real addressing is a legacy-mode form of address translation
used in real mode. This simplified form of address translation is
backward compatible with 8086-processor effective-to-physical
address translation. In this mode, 16-bit effective addresses are
mapped to 20-bit physical addresses, providing a 1-Mbyte
physical-address space.

Segment selectors are used in real-address translation, but not
as an index into a descriptor table. Instead, the 16-bit segment-
selector value is shifted left by 4 bits to form a 20-bit segment-
base address. The 16-bit effective address is added to this 20-bit
segment base address to yield a 20-bit physical address. If the
sum of the segment base and effective address carries over into
bit 20, that bit can be optionally truncated to mimic the 20-bit

Chapter 1: System-Programming Overview 11
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address wrapping of the 8086 processor by using the A20M#
input signal to mask the A20 address bit.

Real-address translation supports a 1-Mbyte physical-address
space using up to 64K segments aligned on 16-byte boundaries.
Each segment is exactly 64K bytes long. Figure 1-5 shows an
example of real-address translation.
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The legacy x86 architecture provides four operating modes or
environments that support varying forms of memory
management, virtual-memory and physical-memory sizes, and
protection:

Real Mode.
Protected Mode.

Virtual-8086 Mode.

System Management Mode.

12
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The AMDG64 architecture supports all these legacy modes, and it
adds a new operating mode called long mode. Table 1-1 shows
the differences between long mode and legacy mode. Software
can move between all supported operating modes as shown in
Figure 1-6 on page 14. Each operating mode is described in the
following sections.

Table 1-1. Operating Modes
o Defaults' Maximum
System Application Register GPR
Mode Software Recompile | Address | Operand E 2| width
Required | Required Size Size xtensions (bits)
(bits) (bits)
64-Bit yes 64 yes 64
Mode New 9)
3
Long Mode - 64-bit S 32
Compatibility no no 3
Mode 16 16
Protected 32 32 37
Mode Legacy 32- 16 16
bit OS
Legacy Virtual-8086 no no
Mode Mode
16 16 32
Legacy 16-
Real Mode bit OS
Note:
1. Defaults can be overridden in most modes using an instruction prefix or system control bit.
2. Register extensions includes eight new GPRs and eight new XMM registers (also called SSE registers).
3. Long mode supports only x86 protected mode. It does not support x86 real mode or virtual-8086 mode.
Chapter 1: System-Programming Overview 13
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Figure 1-6. Operating Modes of the AMD64 Architecture

131 Long Mode Long mode consists of two submodes: 64-bit mode and
compatibility mode. 64-bit mode supports several new features,
including the ability to address 64-bit virtual-address space.
Compatibility mode provides binary compatibility with existing
16-bit and 32-bit applications when running on 64-bit system
software.

Throughout this document, references to long mode refer
collectively to both 64-bit mode and compatibility mode. If a
function is specific to either 64-bit mode or compatibility mode,
then those specific names are used instead of the name long
mode.
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1.3.2 64-Bit Mode

1.3.3 Compatibility
Mode

Before enabling and activating long mode, system software
must first enable protected mode. The process of enabling and
activating long mode is described in Chapter 14, “Processor
Initialization and Long-Mode Activation.” Long mode features
are described throughout this document, where applicable.

64-bit mode, a submode of long mode, provides support for 64-
bit system software and applications by adding the following
new features:

m  64-bit virtual addresses (processor implementations can
have fewer).

m  Register extensions through a new instruction prefix (REX):
- Adds eight GPRs (R8-R15).
- Widens GPRs to 64 bits.

- Adds eight 128-bit streaming SIMD extension (SSE)
registers (XMM8-XMM15).

m  64-bit instruction pointer (RIP).
m  New RIP-relative data-addressing mode.

m Flat-segment address space with single code, data, and stack
space.

The mode is enabled by the system software on an individual
code-segment basis. Although code segments are used to enable
and disable 64-bit mode, the legacy segmentation mechanism is
largely disabled. Page translation is required for memory
management purposes. Because 64-bit mode supports a 64-bit
virtual-address space, it requires 64-bit system software and
development tools.

In 64-bit mode, the default address size is 64 bits, and the
default operand size is 32 bits. The defaults can be overridden
on an instruction-by-instruction basis using instruction
prefixes. A new REX prefix is introduced for specifying a 64-bit
operand size and the new registers.

Compatibility mode, a submode of long mode, allows system
software to implement binary compatibility with existing 16-bit
and 32-bit x86 applications. It allows these applications to run,
without recompilation, under 64-bit system software in long
mode, as shown in Table 1-1 on page 13.

In compatibility mode, applications can only access the first
4 Gbytes of virtual-address space. Standard x86 instruction
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prefixes toggle between 16-bit and 32-bit address and operand
sizes.

Compatibility mode, like 64-bit mode, is enabled by system
software on an individual code-segment basis. Unlike 64-bit
mode, however, segmentation functions the same as in the
legacy-x86 architecture, using 16-bit or 32-bit protected-mode
semantics. From an application viewpoint, compatibility mode
looks like a legacy protected-mode environment. From a
system-software viewpoint, the long-mode mechanisms are used
for address translation, interrupt and exception handling, and
system data-structures.

Legacy mode consists of three submodes: real mode, protected
mode, and virtual-8086 mode. Protected mode can be either
paged or unpaged. Legacy mode preserves binary compatibility
not only with existing x86 16-bit and 32-bit applications but also
with existing x86 16-bit and 32-bit system software.

Real Mode. In this mode, also called real-address mode, the
processor supports a physical-memory space of 1 Mbyte and
operand sizes of 16 bits (default) or 32 bits (with instruction
prefixes). Interrupt handling and address generation are nearly
identical to the 80286 processor's real mode. Paging is not
supported. All software runs at privilege level 0.

Real mode is entered after reset or processor power-up. The
mode is not supported when the processor is operating in long
mode because long mode requires that paged protected mode
be enabled.

Protected Mode. In this mode, the processor supports virtual-
memory and physical-memory spaces of 4 Gbytes and operand
sizes of 16 or 32 bits. All segment translation, segment
protection, and hardware multitasking functions are available.
System software can use segmentation to relocate effective
addresses in virtual-address space. If paging is not enabled,
virtual addresses are equal to physical addresses. Paging can be
optionally enabled to allow translation of virtual addresses to
physical addresses and to use the page-based memory-
protection mechanisms.

In protected mode, software runs at privilege levels 0, 1, 2, or 3.
Typically, application software runs at privilege level 3, the
system software runs at privilege levels 0 and 1, and privilege

16
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1.3.5 System
Management Mode
(SMM)

level 2 is available to system software for other uses. The 16-bit
version of this mode was first introduced in the 80286 processor.

Virtual-8086 Mode. Virtual-8086 mode allows system software to
run 16-bit real-mode software on a virtualized-8086 processor.
In this mode, software written for the 8086, 8088, 80186, or
80188 processor can run as a privilege-level-3 task under
protected mode. The processor supports a virtual-memory
space of 1 Mbytes and operand sizes of 16 bits (default) or 32
bits (with instruction prefixes)