AMD ¢t

AMD64 Technology

AMDG64 Architecture
Programmer’s Manual
Volume 2:
System Programming

Publication No. Revision Date

24593 3.1 December 2005

Advanced Micro Devices

pa |

AMDA
AMDG64 Technology 24593—Rev. 3.11-December 2005

© 2002-2005 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc.
("AMD") products. AMD makes no representations or warranties with respect to the accuracy or
completeness of the contents of this publication and reserves the right to make changes to
specifications and product descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this
publication. Except as set forth in AMD's Standard Terms and Conditions of Sale, AMD assumes
no liability whatsoever, and disclaims any express or implied warranty, relating to its products
including, but not limited to, the implied warranty of merchantability, fitness for a particular pur-
pose, or infringement of any intellectual property right.

AMD's products are not designed, intended, authorized or warranted for use as components in
systems intended for surgical implant into the body, or in other applications intended to support
or sustain life, or in any other application in which the failure of AMD’s product could create a
situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any time without
notice.

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, AMD Opteron and combinations thereof, 3DNow!, nX586, and nX686 are trademarks, and
AMD-K®6 is a registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

AMDZU

24593—Rev. 3.11-December 2005 AMDé64 Technology
Contents

Figuresottt ittt ittt ieeeeeenaasonesansanenns XV

= 10) xxi

Revision Historyoiiiiiiiiiiiiiiiiiiiiennnnnnnns XXV

Prefacettt ittt ittt et xxvii

About ThisBook............. . i, XXVii

Audience. ... i e e xxvii

Contact Information., XXVil

Organizationuuiuiiiiuinnnneeeeeennnnnns XxViii

Definitions. i e XXix

Related Documents 00ttt xli

1 System-Programming Overview, 1

1.1 Memory Model. i . 1

Memory Addressing. 2

Memory Organizationuvuiiinnnnnnnnnnn. 4

Canonical Address Form. i, 5

1.2 Memory Management.uvertettnnnneeennnnnnn. 6

Segmentation. 6

Paging e e e 8

Mixing Segmentation and Paging 10

Real Addressing.t 11

1.3 Operating Modes.ttt iiiiieeenen. 12

Long Mode 14

64-Bit Mode e e 15

Compatibility Mode, 15

Legacy Modes.ttt 16

System Management Mode (SMM) 17

1.4 System Registers.ot e 17

1.5 System-Data Structurescoiuieierinnnnnnn 20

1.6 Interrupts. i e e e 22

1.7 Additional System-Programming Facilities 24

Hardware Multitasking............... 24

Machine Check 25

Software Debugging 26

Performance Monitoring.0uiiieinnn... 26

2 x86 and AMD64 Architecture Differences 29

21 Operating Modes.ttt ieeeenns 29

LongMode 29

Legacy Mode0 it 30

System-Management Mode 30

Contents iii

AMDZU

AMDG64 Technology 24593—Rev. 3.11-December 2005
2.2 Memory Model. 31
Memory Addressing. i . 31

Page Translation i, 31
SegMENtation. . ..o vttt ettt e 33

2.3 ProtectionChecks 35
2.4 ReEgISterS. . vttt ittt e e e e 35
General-Purpose Registers., 35
128-Bit Media Registers, 36

Flags Register0i ittt 36
Instruction Pointert 36

Stack PoInterttt 36
Control Registers.ttt 36
Debug Registers. 36
Extended Feature Register (EFER) 37
Memory Type Range Registers (MTRRs) 37

Other Model-Specific Registers (MSRS) 37

2.5 Instruction Set. i e 37
REX Prefixes i 37
Segment-Override Prefixes in 64-Bit Mode. 38
OperandsandResults. 38
Address Calculations., 38
Instructions that Reference RSP....................... 39
Branches............ 40

NOP INStrucCtion.ovvie ittt ettt 43
Single-Byte INC and DEC Instructions 43
MOVSXD INStructionouvivininnnnnnnnnnn. 43
Invalid Instructions.ttt 44
FXSAVE and FXRSTOR Instructions 45

2.6 Interrupts and Exceptionsciuiiiinnn... 46
Interrupt Descriptor Table 46

Stack Frame Pushes 46

Stack Switching i 47

IRET Instructiono ittt 47
Task-Priority Register (CR8) 48

New Exception Conditions. 48

2.7 Hardware Task Switching 48
2.8 Long-Mode vs. Legacy-Mode Differences................ 49
3 System Resources.coiiiiiiiiierinnnerennnnnas 51
3.1 System-Control Registers...............c.. ... 51
L0 D =Y =4 £ o 53
CR2and CR3 RegiSters. . .. v v v vt e i et e e eiii e eeeennn 56

CRA REgISter . .ottt e 58

CR1 and CR5-CR7 RegiStersot 62
64-Bit-Mode Extended Control Registers 62

CRS8 (Task Priority Register, TPR). 63
RFLAGS Registerouiiiiit e 63
Extended Feature Enable Register (EFER).............. 68

iv Contents

AMDZU

24593—Rev. 3.11—-December 2005

AMDG64 Technology

3.2 Model-Specific Registers (MSRs) 71
System Configuration Register (SYSCFG)............... 72
System-Linkage Registers 74
Memory-Typing Registers., 74
Debug-Extension Registers 75
Performance-Monitoring Registers 75
Machine-Check Registers............... 76

3.3 Processor Feature Identification....................... 77
Segmented Virtual Memoryccoviieiierennnnnns 79
4.1 Real Mode Segmentationcciiuueeeennn. 80
4.2 Virtual-8086 Mode Segmentation 80
4.3 Protected Mode Segmented-Memory Models. 81
Multi-Segmented Model 81
Flat-Memory Model. 82
Segmentation in 64-bitmode, 82

4.4 Segmentation Data Structures and Registers 82
4.5 Segment Selectors and Registers 84
Segment Selectors.ottt 84
Segment Registers. 86
Segment Registersin 64-bit Mode. 87

4.6 Descriptor Tables 89
Global Descriptor Table 90
Global Descriptor-Table Register 91

Local Descriptor Table 92

Local Descriptor-Table Register 93
Interrupt Descriptor Table 96
Interrupt Descriptor-Table Register 97

4.7 Legacy Segment Descriptorsuuviuennnnnnn.. 97
Descriptor Format. 0t nnnn.. 97
Code-Segment Descriptorscovviiieennnn. 100
Data-Segment Descriptors, 102
System Descriptors 104

Gate DesCriptorsottt et e 106

4.8 Long-Mode Segment Descriptors.covuuunnn.. 108
Code-Segment Descriptorscovvviiiinnnnnnnnnn 108
Data-Segment Descriptors 110
System Descriptors 111

Gate DesCriptorsottt e 113

Long Mode Descriptor Summary.couue.... 116

4.9 Segment-Protection Overviewcoouunu.. 118
Privilege-Level Concept oot i 119
Privilege-Level Typeso 120

410 Data-Access Privilege Checks 121
Accessing DataSegments., 121
Accessing Stack Segments 123

411 Control-Transfer Privilege Checks 124
Direct Control Transfers............ 125

Contents

AMDZU

AMDG64 Technology

24593—Rev. 3.11—-December 2005

Control Transfers Through Call Gates. 129
Return Control Transfers, 137

412 LimitChecks 140
Determining Limit Violations 140

413 TypeChecks. 141
Type Checks in Legacy and Compatibility Modes 142

Long Mode Type Check Differences 143

Page Translation and Protection 145
51 Page Translation Overviewcoiiiunna.. 146
Page-Translation Optionsc.oiuiuiuuunnnnnn.. 148
Page-Translation Enable (PG) Bit 149
Physical-Address Extensions (PAE)Bit................. 149
Page-Size Extensions (PSE)Bit 149
Page-Directory Page Size (PS) Bit 150

5.2 Legacy-Mode Page Translation 150
CR3 REGIStEr . ittt ettt e e et 151
Normal (Non-PAE) Pagingc0iiiiiin... 152

PAE Paging.ttt et 156

5.3 Long-Mode Page Translation 160
Canonical Address Form. 161

CRE . e 161
4-Kbyte Page Translationccouiiuiunn... 162
2-Mbyte Page Translation.................ccoiiuun... 165

5.4 Page-Translation-Table Entry Fields 168
Field Definitions i, 168

5.5 Translation-Lookaside Buffer (TLB) 172
Global Pages. i e 173
TLBManagementuuuuuumnneeeennnnneeens 173

5.6 Page-Protection Checks 174
NoExecute (NX)Bit 175
User/Supervisor (U/S) Bit......... 175
Read/Write (RIW) Bitttt 176

Write Protect (CROWP) Bit.......................... 176

5.7 Protection Across Paging Hierarchy................... 176
Access to User Pages when CROWP=1................. 178

5.8 Effects of Segment Protection........................ 178
System-Management Instructions 179
6.1 Fast System Calland Return......................... 181
SYSCALL and SYSRETt 182
SYSENTER and SYSEXIT (Legacy Mode Only) 184
SWAPGS INStruction.ot iee e eeiieeeennnn 185

6.2 System Statusand Control........................... 186
Processor Feature Identification (CPUID) 186
Accessing Control Registers. 186
Accessing the RFLAGs Register 187
Accessing Debug Registers. 187

vi Contents

AMDZU

24593—Rev. 3.11—-December 2005

AMDG64 Technology

Accessing Model-Specific Registers 188

6.3 Segment Register and Descriptor Register Access....... 188
Accessing Segment Registers. 188
Accessing Descriptor-Table Registers.................. 189

6.4 Protection Checking 189
Checking AccessRights 190
Checking Segment Limits., 190
Checking Read/Write Rights 190
Adjusting AccessRights............. 190

6.5 Processor Halt 191
6.6 Cache and TLB Management.oouueennnn. 191
Cache Management.ouuutiemnnnnueennnn. 191
TLBInvalidationiiii i 191
Memory Systemcovitiiietennneronnsesonnssnnas 193
7.1 Memory-Access Orderingiviiinnn... 196
Read Orderingot 197

Write Ordering. i, 197
Read/Write Barriersciiiiiiiiiniiinnnnnnn 198

7.2 Memory Coherency and Protocol 199
Special Coherency Considerations 201

7.3 Memory Types e e 202
7.4 Buffering and Combining Memory Writes 205
Write Buffering 205

Write Combining.t 207

7.5 Memory Caches i, 208
Cache Organization and Operation 209

Cache Control Mechanisms 212

Cache and Memory Management Instructions. 215
Serializing Instructions. 216

7.6 Memory-Type Range Registers 217
MTRR Type Fields. i 218
MTRRS ..ttt e e 219

Using MTRRS. et 226
MTRRs and Page Cache Controls 227
MTRRSs in Multi-Processing Environments. 229

7.7 Page-Attribute Table Mechanism 230
PAT Registerottt et e e e e 230

PAT Indexingcv ittt ittt et et e e e e e e 231
Identifying PAT Support. 0., 232

PAT ACCESSES . . v v ittt et et e e e e e 233
Combined Effect of MTRRsand PAT 233

PATs in Multi-Processing Environments. 234

7.8 Memory-Mapped /O i 235
Extended Fixed-Range MTRR Type-Field Encodings 235
IORRS . . e 237

IORR Overlapping. i 240

Top Of MemOry . ..ottt et ettt 240

Contents

AMDZU

AMDG64 Technology 24593—Rev. 3.11-December 2005
8 Exceptions and Interrupts.ttt 243
8.1 General Characteristicsouuiinnnnnnn. 244
Precision. 244
Instruction Restart i, 244

Types of EXceptions.ttt 245
Masking External Interrupts 245
Masking Floating-Point and Media Instructions 246
Disabling Exceptions.ttt 246

8.2 =14 10 P 247
#DE—Divide-by-Zero-Error Exception (Vector 0) 250
#DB—Debug Exception (Vector 1) 250
NMI—Non-Maskable-Interrupt Exception (Vector 2) 252
#BP—Breakpoint Exception (Vector 3). 252
#OF—Overflow Exception (Vector4) 252
#BR—Bound-Range Exception (Vector 5). 253
#UD—Invalid-Opcode Exception (Vector6)............. 253
#NM—Device-Not-Available Exception (Vector 7). 254
#DF—Double-Fault Exception (Vector 8) 254
Coprocessor-Segment-Overrun Exception (Vector 9) 256
#TS—Invalid-TSS Exception (Vector 10) 256
#NP—Segment-Not-Present Exception (Vector 11)....... 257
#SS—Stack Exception (Vector 12). 258
#GP—General-Protection Exception (Vector 13)......... 259
#PF—Page-Fault Exception (Vector14) 261
#MF—x87 Floating-Point Exception-Pending (Vector 16). . 262
#AC—Alignment-Check Exception (Vector 17) 263
#MC—Machine-Check Exception (Vector 18) 264
#XF—SIMD Floating-Point Exception (Vector 19) 265
User-Defined Interrupts (Vectors 32-255) 266

8.3 Exceptions During a Task Switch 267
8.4 Error Codes 267
Selector-Error Code. 267
Page-Fault Error Code., 268

8.5 Priorities. . .ttt e e e 269
Floating-Point Exception Priorities. 271
External Interrupt Priorities 272

8.6 Real-Mode Interrupt Control Transfers 274
8.7 Legacy Protected-Mode Interrupt Control Transfers 276
Locating the Interrupt Handler. 276
Interrupt To Same Privilege. 277
Interrupt To Higher Privilege 278
Privilege Checks 280
Returning From Interrupt Procedures 283

8.8 Virtual-8086 Mode Interrupt Control Transfers.......... 284
Protected-Mode Handler Control Transfer.............. 285
Virtual-8086 Handler Control Transfer................. 286

8.9 Long-Mode Interrupt Control Transfers................ 287

Viii Contents

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology
Interrupt Gatesand Trap Gates. 287

Locating the Interrupt Handler. 288

Interrupt Stack Frame 289
Interrupt-Stack Table 292

Returning From Interrupt Procedures 294

8.10 VirtualInterruptsc.uiuuiiiiiiiiennnnnn.. 295
Virtual-8086 Mode Extensions........................ 296

Protected Mode Virtual Interrupts 300

Effect of Instructions that Modify EFLAGS.IF 300

9 Machine Check Mechanism 305
9.1 Determining Machine-Check Support.................. 305

9.2 Machine-Check Errors 306

Error Sources.coiiii it e e e 306

9.3 Machine Check MSRSttt 307
Global Status and Control Registers................... 308
Error-Reporting Register Banks 310

Error Codesot 312

9.4 Initializing the Machine-Check Mechanism............. 315

9.5 Using Machine Check Features....................... 316
Handling Machine Check Exceptions 316

Reporting Correctable Machine Check Errors........... 318

10 System-Management Mode. 321
SMM Differences.o 322

10.1 SMM RESOUICES .« v vttt vt teeee e e i ttieee ey 322
SM R AM .. 322

SMBASE Registerttt e 323

SMRAM State-Save Areacoviiiiiinnnnnnnn 324
SMM-Revision Identifier 330

10.2 Using SMM. . ..ttt ettt et e e et et et 331
System-Management Interrupt (SMI).................. 331

SMM Operating-Environment 332

Exceptions and Interrupts, 333
Invalidatingthe Caches 334

Saving Additional Processor State. 335

Operating in Protected Mode and Long Mode 336
Auto-HaltRestart0 iiiiinnnnn.. 336
I/OInstructionRestart 337

10.3 Leaving SMM.ttt e e e e e e e 339

11 128-Bit, 64-Bit, and x87 Programming 341
11.1 Overview of System-Software Considerations........... 341

11.2 Determining Media and x87 Feature Support........... 341

11.3 Enabling 128-Bit Media Instructions. 342

11.4 Media and x87 Processor Statecoouu... 343
128-Bit Media State.ttt 343

64-Bit Media State.ttt 345

Contents ix

AMDZU

AMDG64 Technology 24593—Rev. 3.11-December 2005
X87 StaAlE. o vttt e e 346

Saving Media and x87 Processor State 348

12 Task Managementccoituiierennnnnonnannas 361
12.1 Hardware Multitasking Overview..................... 361

12.2 Task-Management Resources. 362

TSS Selector. oottt 364

TSS Descriptor. . . . oottt et e e 364

Task Register.ttt 365

Legacy Task-State Segment, 367

64-Bit Task State Segmentcciiunir.. 372

Task Gate Descriptor (Legacy Mode Only).............. 375

12.3 Hardware Task-Management in Legacy Mode........... 375

Task Memory-Mappingo ienennneiiinnnnnnnn 375

Switching Tasks 377

Task Switches Using Task Gates 379

Nesting Taskst 381

13 Debug and Performance Resources.................... 385
13.1 Software-Debug Resources.ccoiiiunno.. 386
Debug Registers. i 387

13.2 Breakpoints ittt 396
Setting Breakpoints. i 396

Using Breakpoints.oinniiiiiiiiiinnnnn 398

Single Stepping oo it 402

Breakpoint Instruction (INT3) 403
Control-Transfer Breakpoint Features. 403

13.3 Performance Optimization........................... 405
Performance Countersiuiuiuuiiiiinnnnnn. 406

Performance Event-Select Registers................... 407

Using Performance Countersoouvuuunnn.. 410

Time-Stamp Counter.oviinn i 410

14 Processor Initialization and Long-Mode Activation....... 413
14.1 Reset and Initialization 413
Built-In Self Test (BIST)o 413

Clock Multiplier Selection 414

Processor Initialization State......................... 414

Multiple Processor Initialization 417

Fetching the First Instruction. 417

14.2 Hardware Configuration.cceviinnn... 418
Processor Implementation Information 418

Enabling Internal Caches............................ 418

Initializing Media and x87 Processor State 419
Model-Specific Initialization 421

14.3 Initializing RealMode 422

14.4 Initializing Protected Modeciiiu... 423

14.5 InitializingLongMode 424

X Contents

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology
14.6 Enabling and Activating Long Mode. 426
Activating LongMode. 427
Consistency Checks. i, 428
Updating System Descriptor Table References.......... 428
Relocating Page-Translation Tables. 429

14.7 LeavingLongMode. 429
14.8 Long-Mode Initialization Example 430
15 Secure Virtual Machine., 437
15.1 The Virtual Machine Monitor 437
15.2 SVM Hardware OVerview.ouuuiuiunnnnnnnn. 437
Virtualization Support i, 437

Guest Mode 438
External Access Protection 438
Tagged TLB e e 438
Interrupt Support e 438
Restartable Instructions., 438
Security SUPPOrt e 438

15.3 SVM Processor and Platform Extensions 439
15.4 Enabling SVM 439
155 VMRUNINStructioncouiiiiinnnennnnnnn.. 440
Basic Operationuui et 440

15.6 #VMEXIT 446
15.7 Intercept Operationuuiimneeennnnnnn.. 447
State Saved on Exit......... 448
Intercepts During IDT Interrupt Delivery 448
EXITINTINFO Pseudo-Code, 450

15.8 Instruction Intercepts.uiiiineeennnnnnn.. 451
Read/Write of CRO i, 451
Read/Write of CR3 (excluding task switch) 451
Read/Write of other CRS, 451
Read/Write of Debug Registers, DRn 451
Selective CR0O Write Intercept., 452
Reading/Writing of IDTR, GDTR, LDTR, TR............ 452
RDTSC Instruction Intercept.t 452
RDPMC Instruction Interceptcciiinuneo... 452
PUSHF Instruction Intercept. 452

POPF Instruction Intercept, 452
CPUID Instruction Intercept, 452

RSM Instruction Interceptooi .. 453

IRET Instruction Intercept., 453
Software Interrupt Intercept 453

INVD Instruction Intercept, 453
PAUSE Instruction Intercept, 453

HLT Instruction Intercept., 453
INVLPG Instruction Interceptou.... 453
INVLPGA Instruction Intercept. 453
VMRUN Instruction Interceptcouvieeen... 453
Contents Xi

AMDZU

AMDG64 Technology 24593—Rev. 3.11-December 2005
VMLOAD Instruction Intercept....................... 453
VMSAVE Instruction Intercept 454
VMMCALL Instruction Intercept 454
STGI Instruction Intercept.c it 454
CLGI Instruction Intercept. 454
SKINIT Instruction Intercept., 454
RDTSCP Instruction Intercept.oouu.... 454
ICEBP Instruction Intercept.cvvviinnnn... 454
WBINVD Instruction Intercept 454

159 JTOIO INterCePtS . v vvt ittt et e e ettt e e 454
15.10 MSR INtercepts . .. oo vv i ittt e e e e e e e e e e e e e e e 456
15.11 Exception Intercepts.cuiiiiiiinneennnnnn.. 457
#DE (Divide By Zero)o 458

HDB (DEDUS). . . oo oot e 458
Vector 2 (Reserved).t 459

#BP (Breakpoint).ottt 459

HOF (Overflow) ...t e 459

#BR (Bound-Range)., 459

#UD (Invalid Opcode) oo vt 459

#NM (Device-Not-Available). 459

#DF (Double Fault) i 459
Vector 9 (Reserved).coiiiiiniiiiin . 459

#TS (Invalid TSS).o e 459

#NP (Segment Not Present) 459

#SS (Stack Fault) 459

#GP (General Protection), 460

#PF (Page Fault) i, 460

#MF (X87 Floating Point)., 460

#AC (Alignment Check) 460

#MC (Machine Check). i 460

#XF (SIMD Floating Point). iinnn... 460

15.12 Interrupt Interceptsuu . 460
INTR Intercept.o i ittt e e i 461
NMIInterceptottt et e i 461

SMI INtercept. . oo vttt ittt ettt e ettt 461

INIT Interceptottt eenn 462
Virtual Interrupt Intercept., 462

15.13 Miscellaneous Interceptscviiiinneennnnn.. 462
Task Switch Intercept, 462
Ferr_Freeze Intercept........ ...t iiinennnnn. 463
Shutdown Intercept.o 463

15.14 VMSAVE and VMLOAD Instructions. 463
15.15 TLB Controlt 464
TLBFlush......... .. it 465
Invalidate Page, Alternate ASID 465

15.16 Global Interrupt Flag, STGI and CLGI Instructions 465
15.17 VMMCALL Instruction.ccuuuieeeeernnnnn.. 467
Xii Contents

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology
15.18 Paged Real Mode. 467
15.19 EventInjectionc..uuuiiiiinninnnnnnn. 467
15.20 Interrupt and local APIC Support 469
Physical (INTR) Interrupt Masking in EFLAGS 469
Virtualizing APIC.TPR 469

TPR Accessin32-bitMode. ..., 469
Injecting Virtual (INTR) Interrupts 470
Interrupt Shadows. 471
Virtual Interrupt Intercept., 471
Interrupt Masking in Local APIC...................... 472

INIT Supportttt e 473

NMI Supportottt e e e e e 474

15.21 SMM SUPPOTt. . ettt e et e e e e e e e e e e e e e e 474
Sources of SMI. e 474
Responseto SMI i 474
Containerizing Platform SMM 475

15.22 Last Branch Record Virtualization 476
Enabling LBR Virualization.......................... 477
.................... Host and Guest LBR Virtualization477

LBR Virtualization CPUID Feature Detection........... 477

15.23 External Access Protection 477
Device IDs and Protection Domains 478
Device Exclusion Vector (DEV)....................... 478
AccessChecking 479

DEV CapabilityBlock............. 480

DEV Register Access Mechanism 481

DEYV Control and Status Registers 482
Unauthorized AccessLoggingcovin... 485
Secure Initialization Support.o..... 485

15.24 Nested Paging Facility 486
Traditional Paging versus Nested Paging 486
Replicated Stateottt 487
Enabling Nested Paging 488
Nested Paging and VMRUN/#VMEXIT. 488
Nested Table Walk. 488

Host versus Guest Page Faults, Fault Ordering 489
Combining Host and Guest Attributes 490
Combining Memory Types, MTRRs. 491

Page Splinteringt 493
Legacy PAEModeo i 493
A20Masking 494
Detecting Nested Paging Support 494

15.25 SeCUIItY ..o vv ittt ettt e e e e e e e e e e e e 494
15.26 Secure Startup with SKINIT 494
Secure Loadert 495
Secure LoaderImage, 495
Secure LoaderBlock 496
Contents Xiii

AMDZU

AMDG64 Technology 24593—Rev. 3.11-December 2005
Trusted Platform Module 497
System Interface, Memory Controller and I/O Hub Logic. . 498
SKINIT Operationttt et et et eeeeeeeennn 498
SL AbOrt. .o 500
Secure Multiprocessor Initialization................... 500
15.27 Security Exception (#SX) oo it ittt e 502
15.28 SVMRelated MSRS.ttt e e 502
VM_CR MSR (C001_0114h), 502
IGNNE MSR (C001_0115h).t 503
SMM_CTL MSR (C001_0116h)........................ 503
VM_HSAVE_PA MSR (C001_0117h)504
Appendix A MSR Cross-Reference.coiiiiiiietinnneronnansanss 505
A.1 MSR Cross-Reference by MSR Address 505
A.2 System-Software MSRS............. 509
A3 Memory-Typing MSRs., 510
A.4 Machine-Check MSRS., 513
A5 Software-DebugMSRs 514
A.6 Performance-Monitoring MSRs 515
Appendix B Layout of VMCB ittt ennnnnnnns 517
B.1 Layout of VMCB i 517
Appendix C Intercept Exit Codes.ciiiiiiiiiiiiiiieiennnnnnnns 527
IndexX. ..o v vttt i ittt ittt ittt 531
Xiv Contents

AMDZU

24593—Rev. 3.11-December 2005 AMD64 Technology

Figures
Figure 1-1. Segmented-MemoryModel........... 7
Figure 1-2. FlatMemoryModel..........., 8
Figure 1-3. PagedMemoryModel 9
Figure 1-4. 64-Bit Flat, Paged-MemoryModel 11
Figure 1-5. Real-AddressMemoryModel 12
Figure 1-6. Operating Modes of the AMDG64 Architecture 14
Figure 1-7. SystemRegisters............cuiiiiiirnrennnnnnnn.. 19
Figure 1-8. System-DataStructures.c.coeeeeeeeeeeneenn.. 21
Figure 3-1. ControlRegisterO(CRO)., 53
Figure 3-2. Control Register 2 (CR2)—Legacy-Mode 57
Figure 3-3. Control Register 2 (CR2)—LongMode 57
Figure 3-4. Control Register 3 (CR3)—Legacy-Mode Non-PAE Paging . . 57
Figure 3-5. Control Register 3 (CR3)—Legacy-Mode PAE Paging. 57
Figure 3-6. Control Register 3 (CR3)—LongMode 58
Figure 3-7. ControlRegister4 (CR4)., 59
Figure 3-8. RFLAGSRegister, 64
Figure 3-9. Extended Feature Enable Register (EFER) 69
Figure 3-10.AMDG64 Architecture Model-Specific Registers 72
Figure 3-11. System-Configuration Register (SYSCFG) 73
Figure 4-1. Segmentation DataStructures......................... 83
Figure 4-2. Segment and Descriptor-Table Registers 84
Figure 4-3. Segment Selector 85
Figure 4-4. Segment-Register Format.............................. 87
Figure 4-5. FS and GS Segment-Register Format—64-Bit Mode. 88
Figure 4-6. Global and Local Descriptor-Table Access 91
Figure 4-7. GDTR and IDTR Format—LegacyModes 91
Figure 4-8. GDTR and IDTR Format—LongMode................... 92
Figure 4-9. Relationship betweenthe LDTandGDT................. 93
Figure 4-10.LDTR Format—LegacyMode 94
Figure 4-11. LDTR Format—LongMode. 94
Figure 4-12. IndexinganIDT........... ...ttt 97
Figure 4-13. Generic Segment Descriptor—Legacy Mode 98
Figure 4-14. Code-Segment Descriptor—LegacyMode............... 100

Figures xv

AMDZU

AMDG64 Technology 24593—Rev. 3.11—-December 2005
Figure 4-15. Data-Segment Descriptor—LegacyMode 103
Figure 4-16. LDT and TSS Descriptor—Legacy/Compatibility Modes. . . 106
Figure 4-17. Call-Gate Descriptor—LegacyMode 107
Figure 4-18. Interrupt-Gate and Trap-Gate Descriptors—Legacy Mode . 107
Figure 4-19. Task-Gate Descriptor—LegacyMode 107
Figure 4-20. Code-Segment Descriptor—LongMode. 109
Figure 4-21. Data-Segment Descriptor—LongMode................. 110
Figure 4-22. System-Segment Descriptor—64-BitMode 113
Figure 4-23. Call-Gate Descriptor—LongMode..................... 114
Figure 4-24. Interrupt-Gate and Trap-Gate Descriptors—Long Mode. . . 115
Figure 4-25.Privilege-Level Relationships.......................... 120
Figure 4-26. Data-Access Privilege-Check Examples 122
Figure 4-27. Stack-Access Privilege-Check Examples................ 124
Figure 4-28. Nonconforming Code-Segment Privilege-Check Examples. 127
Figure 4-29. Conforming Code-Segment Privilege-Check Examples. ... 129
Figure 4-30. Legacy-Mode Call-Gate Transfer Mechanism............ 130
Figure 4-31. Long-Mode Call-Gate Access Mechanism 131
Figure 4-32. Privilege-Check Examples for CallGates 133
Figure 4-33.Legacy-Mode 32-Bit Stack Switch, with Parameters 135
Figure 4-34.32-Bit Stack Switch, No Parameters—Legacy Mode. 136
Figure 4-35.Stack Switch—ILongMode.o, 137
Figure 5-1. Virtual to Physical Address Translation—Long Mode. 147
Figure 5-2. Control Register 3 (CR3)—Non-PAE Paging Legacy-Mode . 151
Figure 5-3. Control Register 3 (CR3)—PAE Paging Legacy-Mode. 151
Figure 5-4. 4-Kbyte Non-PAE Page Translation—Legacy Mode........ 153
Figure 5-5. 4-Kbyte PDE—Non-PAE Paging Legacy-Mode 153
Figure 5-6. 4-Kbyte PTE—Non-PAE Paging Legacy-Mode 154
Figure 5-7. 4-Mbyte Page Translation—Non-PAE Paging Legacy-Mode . 155
Figure 5-8. 4-Mbyte PDE—Non-PAE Paging Legacy-Mode........... 155
Figure 5-9. 4-Kbyte PAE Page Translation—Legacy Mode........... 157
Figure 5-10. 4-Kbyte PDPE—PAE Paging Legacy-Mode.............. 158
Figure 5-11. 4-Kbyte PDE—PAE Paging Legacy-Mode 158
Figure 5-12. 4-Kbyte PTE—PAE Paging Legacy-Mode 158
Figure 5-13.2-Mbyte PAE Page Translation—Legacy Mode 159
Figure 5-14. 2-Mbyte PDPE—PAE Paging Legacy-Mode 160

Xvi Figures

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology
Figure 5-15. 2-Mbyte PDE—PAE Paging Legacy-Mode............... 160
Figure 5-16. Control Register 3 (CR3)—LongMode 161
Figure 5-17. 4-Kbyte Page Translation—LongMode................. 163
Figure 5-18. 4-Kbyte PML4E—LongMode 164
Figure 5-19. 4-Kbyte PDPE—LongMode 164
Figure 5-20. 4-Kbyte PDE—LongModecciiiee... 164
Figure 5-21. 4-Kbyte PTE—LongMode. 165
Figure 5-22. 2-Mbyte Page Translation—LongMode. 166
Figure 5-23. 2-Mbyte PML4E—LongMode. 167
Figure 5-24. 2-Mbyte PDPE—LongMode, 167
Figure 5-25. 2-Mbyte PDE—LongMode, 167
Figure 6-1. STAR,LSTAR,CSTAR,and MASKMSRs............... 183
Figure 6-2. SYSENTER_CS,SYSENTER_ESP, SYSENTER_EIP MSRs 185
Figure 7-1. Processor and Memory System.cccceen... 194
Figure 7-2. MOESI State Transitions.ccueieeeeeee... 200
Figure 7-3. Cache OrganizationExample......................... 210
Figure 7-4. MTRR Mapping of Physical Memory.................... 220
Figure 7-5. Fixed-Range MTRR............., 221
Figure 7-6. MTRRphysBasenRegister vue.... 223
Figure 7-7. MTRRphysMaskn Register.ccovvo.... 224
Figure 7-8. MTRR defType RegisterFormat 226
Figure 7-9. MTRR Capability Register Format 227
Figure 7-10. PATRegIStErttt ittt it e ie e iee e 230
Figure 7-11.Extended MTRR Type-Field Format (Fixed-Range MTRRs) 236
Figure 7-12. TORRBasenRegister, 239
Figure 7-13. IORRMasknRegister 240
Figure 7-14.Memory Organization Using Top-of-Memory Registers. 241
Figure 7-15. Top-of-Memory Registers (TOP_MEM, TOP_MEM?2). 242
Figure 8-1. ControlRegister2(CR2)........ 261
Figure 8-2. SelectorErrorCode. iiiiinnnnnn.. 267
Figure 8-3. Page-FaultErrorCode............... ..., 268
Figure 8-4. Task Priority Register (CR8) 273
Figure 8-5. Real-Mode Interrupt Control Transfer 274
Figure 8-6. Stack After Interruptin RealMode..................... 275
Figure 8-7. Protected-Mode Interrupt Control Transfer............. 277
Figure 8-8. Stack After Interrupt to Same Privilege Level............ 278

Figures

AMDZU

AMDG64 Technology 24593—Rev. 3.11—-December 2005
Figure 8-9. Stack After Interrupt to Higher Privilege................ 280
Figure 8-10. Privilege-Check Examples for Interrupts 282
Figure 8-11.Stack After Virtual-8086 Mode Interrupt to Protected Mode 286
Figure 8-12. Long-Mode Interrupt Control Transfer 289
Figure 8-13.Long-Mode Stack After Interrupt—Same Privilege........ 291
Figure 8-14.Long-Mode Stack After Interrupt—Higher Privilege. 292
Figure 8-15. Long-Mode IST Mechanism. 294
Figure 9-1. MCG_CAPRegISter. . ..ottt ittt et it i i e e eeeee e 308
Figure 9-2. MCG_STATUSRegIStert 309
Figure 9-3. MCG_CTLRegiSterttt 310
Figure 9-4. MCi_CTLRegIStersttt 311
Figure 9-5. MCi STATUSRegistercciiiiiiieeeenen... 312
Figure 10-1.Default SMRAM MemoryMapccovuuu.... 323
Figure 10-2. SMBASE RegIStert ititiiteeeennnnn.. 324
Figure 10-3. SMM-Revision Identifier............................. 331
Figure 10-4. I/O Instruction RestartDword 338
Figure 11-1. 128-Bit Media-InstructionState 344
Figure 11-2.64-Bit Media-Instruction State 345
Figure 11-3.x87-Instruction Statettt nnnneenn 347
Figure 11-4. FSAVE/FNSAVE Image (32-Bit, Protected Mode) 350
Figure 11-5.FSAVE/FNSAVE Image (32-Bit, Real/Virtual-8086 Modes) . 351
Figure 11-6.FSAVE/FNSAVE Image (16-Bit, Protected Mode) 352
Figure 11-7.FSAVE/FNSAVE Image (16-Bit, Real/Virtual-8086 Modes) . 353
Figure 11-8. FXSAVE and FXRSTOR Image (64-bit Mode) 355
Figure 11-9. FXSAVE and FXRSTOR Image (Non-64-bit Mode) 356
Figure 12-1. Task-Management Resources......................... 363
Figure 12-2.Task-Segment Selectorottt 364
Figure 12-3.TR Format, Legacy Modecciiiiirerenn... 366
Figure 12-4. TRFormat,LongMode, 366
Figure 12-5. Relationship betweenthe TSSandGDT 367
Figure 12-6. Legacy32-bitTSS. 368
Figure 12-7. 1/O-Permission Bitmap Example....................... 372
Figure 12-8. LongMode TSSFormat............ ..ot .. 374
Figure 12-9. Task-Gate Descriptor, Legacy ModeOnly............... 375
Figure 12-10. Privilege-Check Examples for Task Gates. 381

Xviii Figures

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology
Figure 13-1. Address-Breakpoint Registers (DRO-DR3).............. 388
Figure 13-2. Debug-StatusRegister (DR6) 389
Figure 13-3. Debug-Control Register (DR7)........................ 391
Figure 13-4. Debug-Control MSR (DebugCtIMSR) 394
Figure 13-5. Control-Transfer RecordingMSRs. 395
Figure 13-6. Performance Counter (PerfCtrn)...................... 406
Figure 13-7. Performance Event-Select Register (PerfEvtSeln) 408
Figure 13-8. Time-Stamp Counter (TSC)............. .. i, 411
Figure 15-1. EXITINTINFO for AllInterceptsccovo.... 449
Figure 15-2. EXITINFO1 for IOIO Intercept., 455
Figure 15-3. EXITINFO1 for SMIInterceptccivveeeen... 461
Figure 15-4. EVENTIN]J Fieldinthe VMCB........................ 468
Figure 15-5. Format of SEOI register (inlocal APIC)................. 472
Figure 15-6. Host Bridge DMA Checking 480
Figure 15-7.Format of DEV_OP Register (in PCI Config Space)........ 481
Figure 15-8. Format of DEV_CAP Register (in PCI Config Space)...... 483
Figure 15-9. Formatof DEV_BASE_HI[n]Registers................. 484
Figure 15-10. Format of DEV_BASE_LO[n] Registers 484
Figure 15-11. Format of DEV_MAP[n] Registers. 484
Figure 15-12. Address Translation with Traditional Paging............ 486
Figure 15-13. Address Translation with Nested Paging. 487
Figure 15-14. SLBExampleLayout........... ...t 497
Figure 15-15. Layout of VM_CR MSR (C001_0114h).................. 503
Figure 15-16. Layout of SMM_CTL MSR (C001_0116h) 503
Figures Xix

AMDA
AMDG64 Technology 24593—Rev. 3.11—-December 2005

XX Figures

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology
Tables
Table 1-1. Operating Modes.ttt 13
Table 1-2. Interrupts and Exceptions 24
Table 2-1. Instructions That Reference RSP 40
Table 2-2. 64-Bit Mode Near Branches, Default 64-Bit Operand Size .. 41
Table 2-3. Invalid Instructions in 64-Bit Mode 44
Table 2-4. Invalid Instructions in Long Mode 45
Table 2-5. Reassigned Instructions in 64-Bit Mode 45
Table 2-6. Differences Between Long Mode and Legacy Mode 50
Table 4-1. Segment Registers. 86
Table 4-2. Descriptor Types . . oo vt e e 99
Table 4-3. Code-Segment Descriptor Typeso oo v v iiiiiiiinnn. 102
Table 4-4. Data-Segment Descriptor Types, 104
Table 4-5. System-Segment Descriptor Types (S=0)—Legacy Mode . . 105
Table 4-6. System-Segment Descriptor Types—Long Mode 112
Table 4-7. Descriptor-Entry Field Changes in Long Mode 117
Table 5-1. Supported Paging Alternatives (CRO.PG=1) 148
Table 5-2. Physical-Page Protection, CROWP=0.................. 177
Table 5-3. Effect of CRO.WP=1 on Supervisor Page Access......... 178
Table 6-1. System-Management Instructions 179
Table 7-1. Memory Access by Memory Type 205
Table 7-2. Caching Policy by Memory Typet 205
Table 7-3. AMDG64 Architecture Cache-Operating Modes. 213
Table 7-4. MTRR Type Field Encodings 219
Table 7-5. Fixed-Range MTRR AddressRanges 222
Table 7-6. Combined MTRR and Page-Level Memory Type
with Unmodified PATMSR 228
Table 7-7. PAT Type Encodings.o, 231
Table 7-8. PAT-Register PA-Field Indexing...................... 232
Table 7-9. Combined Effect of MTRR and PAT Memory Types 234
Table 7-10. Extended Fixed-Range MTRR Type Encodings.......... 237
Table 8-1. Interrupt-Vector Source and Cause. 248
Table 8-2. Interrupt-Vector Classification 249
Table 8-3. Double-Fault Exception Conditions 255
Table 8-4. Invalid-TSS Exception Conditions. 257
Tables Xxi

AMDZU

AMDG64 Technology 24593—Rev. 3.11-December 2005
Table 8-5. Stack Exception Error Codes. 259
Table 8-6. General-Protection Exception Conditions 260
Table 8-7. Data-Type Alignment 264
Table 8-8. Simultaneous Interrupt Priorities..................... 270
Table 8-9. Simultaneous Floating-Point Exception Priorities 272
Table 8-10. Virtual-8086 Mode Interrupt Mechanisms 285
Table 8-11. Effect of Instructions that Modify the IFBit 301
Table 10-1. AMDG64 Architecture SMM State-Save Area 325
Table 10-2. Legacy SMM State-Save Area (Not used

by AMDG64 Architecture)coiiiiiiinnen. 329
Table 10-3. SMM Register Initialization.......................... 332
Table 11-1. Deriving FSAVE Tag Field from FXSAVE Tag Field 359
Table 12-1. Effectsof Task Nesting., 382
Table 13-1. Breakpoint-Setting Examples 397
Table 13-2. Breakpoint Location by Condition 399
Table 13-3. Operating-System Mode and User Mode Bits............ 409
Table 14-1. Initial Processor State., 414
Table 14-2. Initial State of Segment-Register Attributes............ 417
Table 14-3. x87 Floating-Point State Initialization 420
Table 14-4. Processor OperatingModesciviieeee.... 426
Table 14-5. Long-Mode Consistency Checks. 428
Table 15-1. Guest Exception or Interrupt Types 449
Table 15-2. Ranges of MSR PermissionsMap 457
Table 15-3. Effect of the GIF on Interrupt Handling 466
Table 15-4. Guest Exception or Interrupt Types 468
Table 15-5. INIT Handling in Different Operating Modes 473
Table 15-6. NMI Handling in Different Operating Modes 474
Table 15-7. SMI Handling in Different Operating Modes............ 475
Table 15-8. DEYV Capability Block, Overall Layout................. 481
Table 15-9. DEYV Capability Header (DEV_HDR)
(InPCIConfig Space)ovviiiii it eieeenn 481
Table 15-10. Encoding of function field in DEV_OP register.......... 482
Table 15-11. DEV_CR Control Registerccciuieeeen... 483
Table 15-12. Combining Guest and Host PAT Types................. 493
Table 15-13. Combining PAT and MTRR Types 493
Table A-1. MSRs of the AMDG64 Architecture 505
Table A-2. System-Software MSR Cross-Reference 509
XXii Tables

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology
Table A-3. Memory-Typing MSR Cross-Reference 511
Table A-4. Machine-Check MSR Cross-Reference. 513
Table A-5. Software-Debug MSR Cross-Reference 514
Table A-6. Performance-Monitoring MSR Cross-Reference........... 515
Table B-1. VMCB Layout, Control Area..................uuu.... 517
Table B-2. VMCB Layout, State Save Areaccuuuu... 523
Table C-1. SVM Intercept Codes.ttt 527
Tables XXifi

AMDA
AMDG64 Technology 24593—Rev. 3.11-December 2005

XXiv Tables

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

Revision History

Date

Revision

Description

December 2005

3.1

Added Chapter 15, Secure Virtual Machine. Incorporated numerous factual
corrections and updates.

February 2005

3.10

Corrected Table 8-6, “General-Protection Exception Conditions”, on page 260.
Added SSE3 information. Clarified and corrected information on the CPUID
instruction and feature identification. Added information on the RDTSCP
instruciton. Clarified information about MTRRs and PATs in multiprocessing
systems.

September 2003

3.09

Corrected numerous minor typographical errors.

April 2003

3.08

Clarified terms in section on FXSAVE/FXSTOR. Corrected several minor errors of
omission. Documentation of CRO.NW bit has been corrected. Several register
diagrams and figure labels have been corrected. Description of shared cache lines
has been clarified in Section 7.2.

September 2002

3.07

Made numerous small grammatical changes and factual clarifications. Added
Revision History.

Revision History

AMDA
AMDG64 Technology 24593—Rev. 3.11-December 2005

XXVi Revision History

AMDA
24593—Rev. 3.11-December 2005 AMDG64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64
Architecture Programmer’s Manual. This table lists each volume
and its order number.

Title Order No.
Volume 1, Application Programming 24592
Volume 2, System Programming 24593
Volume 3, General-Purpose and System Instructions 24594
Volume 4, 128-Bit Media Instructions 26568
Volume 5, 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume (Volume 2) is intended for programmers writing
operating systems, loaders, linkers, device drivers, or system
utilities. It assumes an understanding of AMDG64 architecture
application-level programming as described in Volume 1.

This volume describes the AMDG64 architecture’s resources and
functions that are managed by system software, including
operating-mode control, memory management, interrupts and
exceptions, task and state-change management, system-
management mode (including power management), multi-
processor support, debugging, and processor initialization.

Application-programming topics are described in Volume 1.
Details about each instruction are described in volumes 3, 4,
and 5.

Contact Information

To submit questions or comments concerning this document,
contact our technical documentation staff at
AMDG64.Feedback@amd.com.

Preface XXxvii

AMDZU

AMDG64 Technology

Organization

24593—Rev. 3.11—-December 2005

This volume begins with an overview of system programming
and differences between the x86 and AMDG64 architectures.
This is followed by chapters that describe the following details
of system programming:

System Resources—The system registers and processor ID
(CPUID) functions.

Segmented Virtual Memory—The segmented-memory models
supported by the architecture and their associated data
structures and protection checks.

Page Translation and Protection—The page-translation
functions supported by the architecture and their associated
data structures and protection checks.

System-Management Instructions—The instructions used to
manage system functions.

Memory System—The memory-system hierarchy and its
resources and protocols, including memory-characterization,
caching, and buffering functions.

Exceptions and Interrupts—Details about the types and
causes of exceptions and interrupts, and the methods of
transferring control during these events.

Machine-Check Mechanism—The resources and functions
that support detection and handling of machine-check
errors.

System-Management Mode—The resources and functions
that support system-management mode (SMM), including
power-management functions.

128-Bit, 64-Bit, and x87 Programming—The resources and
functions that support use (by application software) and
state-saving (by the operation system) of the 128-bit media,
64-bit media, and x87 floating-point instructions.

Multiple-Processor ~Management—The features of the
instruction set and the system resources and functions that
support multiprocessing environments.

Debug and Performance Resources—The system resources and
functions that support software debugging and performance
monitoring.

XXviii

Preface

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

Definitions

Terms and Notation

m Legacy Task Management—Support for the legacy hardware
multitasking functions, including register resources and
data structures.

m Processor Initialization and Long-Mode Activation—The
methods by which system software initializes and changes
operating modes.

m Mixing Code Across Operating Modes—Things to remember
when running programs in different operating modes.

There are appendices describing details of model-specific
registers (MSRs) and machine-check implementations.
Definitions assumed throughout this volume are listed below.
The index at the end of this volume cross-references topics
within the volume. For other topics relating to the AMDG64
architecture, see the tables of contents and indexes of the other
volumes.

Some of the following definitions assume a knowledge of the
legacy x86 architecture. See “Related Documents” on page xli
for descriptions of the legacy x86 architecture.

1011b

A binary value—in this example, a 4-bit value.
FOEAh

A hexadecimal value—in this example a 2-byte value.
[1,2)

A range that includes the left-most value (in this case, 1) but
excludes the right-most value (in this case, 2).

7-4
A bit range, from bit 7 to 4, inclusive. The high-order bit is
shown first.

128-bit media instructions

Instructions that use the 128-bit XMM registers. These are a
combination of the SSE and SSE2 instruction sets.

64-bit media instructions

Instructions that use the 64-bit MMX registers. These are
primarily a combination of MMX and 3DNow!™ instruction

Preface

XXix

AMDZU

AMDG64 Technology

24593—Rev. 3.11—-December 2005

sets, with some additional instructions from the SSE and
SSE2 instruction sets.

16-bit mode

Legacy mode or compatibility mode in which a 16-bit
address size is active. See legacy mode and compatibility
mode.

32-bit mode

Legacy mode or compatibility mode in which a 32-bit
address size is active. See legacy mode and compatibility
mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address
size is 64 bits and new features, such as register extensions,
are supported for system and application software.

#GP(0)
Notation indicating a general-protection exception (#GP)
with error code of 0.

absolute

Said of a displacement that references the base of a code
segment rather than an instruction pointer. Contrast with
relative.

ASID
Address space identifier.

biased exponent

The sum of a floating-point value’s exponent and a constant
bias for a particular floating-point data type. The bias makes
the range of the biased exponent always positive, which
allows reciprocation without overflow.

byte
Eight bits.

clear
To write a bit value of 0. Compare set.

XXX

Preface

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

compatibility mode
A submode of long mode. In compatibility mode, the default

address size is 32 bits, and legacy 16-bit and 32-bit
applications run without modification.

commit

To irreversibly write, in program order, an instruction’s
result to software-visible storage, such as a register
(including flags), the data cache, an internal write buffer, or
memory.

CPL
Current privilege level.

CRO-CR4

A register range, from register CRO through CR4, inclusive,
with the low-order register first.

CRO.PE =1

Notation indicating that the PE bit of the CRO register has a
value of 1.

direct

Referencing a memory location whose address is included in
the instruction’s syntax as an immediate operand. The
address may be an absolute or relative address. Compare
indirect.

dirty data

Data held in the processor’s caches or internal buffers that is
more recent than the copy held in main memory.

displacement

A signed value that is added to the base of a segment
(absolute addressing) or an instruction pointer (relative
addressing). Same as offset.

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

Preface

XXXi

AMDZU

AMDG64 Technology

24593—Rev. 3.11—-December 2005

DS:rSI

The contents of a memory location whose segment address is
in the DS register and whose offset relative to that segment
is in the rSI register.

EFER.LME =0

Notation indicating that the LME bit of the EFER register
has a value of 0.

effective address size

The address size for the current instruction after accounting
for the default address size and any address-size override
prefix.

effective operand size

The operand size for the current instruction after
accounting for the default operand size and any operand-
size override prefix.

element
See vector.

exception

An abnormal condition that occurs as the result of executing
an instruction. The processor’s response to an exception
depends on the type of the exception. For all exceptions
except 128-bit media SIMD floating-point exceptions and
x87 floating-point exceptions, control is transferred to the
handler (or service routine) for that exception, as defined by
the exception’s vector. For floating-point exceptions defined
by the IEEE 754 standard, there are both masked and
unmasked responses. When unmasked, the exception
handler is called, and when masked, a default response is
provided instead of calling the handler.

FF /0

Notation indicating that FF is the first byte of an opcode,
and a subopcode in the ModR/M byte has a value of 0.

flush

An often ambiguous term meaning (1) writeback, if
modified, and invalidate, as in “flush the cache line,” or (2)
invalidate, as in “flush the pipeline,” or (3) change a value,
as in “flush to zero.”

XXXii

Preface

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

GDT
Global descriptor table.

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN
Ignore. Field is ignored.

indirect

Referencing a memory location whose address is in a
register or other memory location. The address may be an
absolute or relative address. Compare direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

vr
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86

The legacy x86 architecture. See “Related Documents” on
page xli for descriptions of the legacy x86 architecture.

legacy mode

An operating mode of the AMDG64 architecture in which
existing 16-bit and 32-bit applications and operating systems
run without modification. A processor implementation of
the AMDG64 architecture can run in either long mode or legacy
mode. Legacy mode has three submodes, real mode, protected
mode, and virtual-8086 mode.

long mode

An operating mode unique to the AMDG64 architecture. A
processor implementation of the AMD64 architecture can

Preface

XXXl

AMDZU

AMDG64 Technology

24593—Rev. 3.11—-December 2005

run in either long mode or legacy mode. Long mode has two
submodes, 64-bit mode and compatibility mode.

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory

Physical memory, such as RAM and ROM (but not cache
memory) that is installed in a particular computer system.

mask

(1) A control bit that prevents the occurrence of a floating-
point exception from invoking an exception-handling
routine. (2) A field of bits used for a control purpose.

MBZ

Must be zero. If software attempts to set an MBZ bit to 1, a
general-protection exception (#GP) occurs.

memory
Unless otherwise specified, main memoru.

ModRM

A byte following an instruction opcode that specifies
address calculation based on mode (Mod), register (R), and
memory (M) variables.

moffset
A 16, 32, or 64-bit offset that specifies a memory operand

directly, without using a ModRM or SIB byte.

msb
Most-significant bit.

MSB
Most-significant byte.

multimedia instructions

A combination of 128-bit media instructions and 64-bit media
instructions.

octword
Same as double quadword.

XXXiv

Preface

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

offset

Same as displacement.

overflow

The condition in which a floating-point number is larger in
magnitude than the largest, finite, positive or negative
number that can be represented in the data-type format
being used.

packed
See vector.

PAE
Physical-address extensions.

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in a processor’s caches or internal
buffers. External probes originate outside the processor, and
internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, or eight bytes, or 64 bits.

RAZ
Read as zero (0), regardless of what is written.

real-address mode
See real mode.

real mode

A short name for real-address mode, a submode of legacy
mode.

relative

Referencing with a displacement (also called offset) from an
instruction pointer rather than the base of a code segment.
Contrast with absolute.

reserved
Fields marked as reserved may be used at some future time.

Preface

XXXV

AMDZU

AMDG64 Technology 24593—Rev. 3.11-December 2005
To preserve compatibility with future processors, reserved
fields require special handling when read or written by
software.

Reserved fields may be further qualified as MBZ, RAZ, SBZ
or IGN (see definitions).
Software must not depend on the state of a reserved field,
nor upon the ability of such fields to return to a previously
written state.
If a reserved field is not marked with one of the above
qualifiers, software must not change the state of that field; it
must reload that field with the same values returned from a
prior read.

REX
An instruction prefix that specifies a 64-bit operand size and
provides access to additional registers.

RIP-relative addressing
Addressing relative to the 64-bit RIP instruction pointer.

set
To write a bit value of 1. Compare clear.

SIB
A byte following an instruction opcode that specifies
address calculation based on scale (S), index (I), and base
(B).

SIMD
Single instruction, multiple data. See vector.

SSE
Streaming SIMD extensions instruction set. See 128-bit
media instructions and 64-bit media instructions.

SSE2
Extensions to the SSE instruction set. See 128-bit media
instructions and 64-bit media instructions.

SSE3
Further extensions to the SSE instruction set. See 128-bit
media instructions.

XXXVi Preface

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

Registers

sticky bit
A bit that is set or cleared by hardware and that remains in
that state until explicitly changed by software.

TOP
The x87 top-of-stack pointer.

TSS
Task-state segment.

underflow

The condition in which a floating-point number is smaller in
magnitude than the smallest nonzero, positive or negative
number that can be represented in the data-type format
being used.

vector

(1) A set of integer or floating-point values, called elements,
that are packed into a single operand. Most of the 128-bit
and 64-bit media instructions use vectors as operands.
Vectors are also called packed or SIMD (single-instruction
multiple-data) operands.

(2) An index into an interrupt descriptor table (IDT), used to
access exception handlers. Compare exception.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

In the following list of registers, the names are used to refer
either to a given register or to the contents of that register:

Preface

XXXVil

AMDZU

AMD64 Technology 24593—Rev. 3.11-December 2005
AH-DH
The high 8-bit AH, BH, CH, and DH registers. Compare
AL-DL.
AL-DL
The low 8-bit AL, BL, CL, and DL registers. Compare AH-DH.
AL-r15B
The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and
R8B-R15B registers, available in 64-bit mode.
BP
Base pointer register.
CRn
Control register number n.
CS
Code segment register.
eAX-eSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the
32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers. Compare rAX-rSP.
EFER
Extended features enable register.
eFLAGS
16-bit or 32-bit flags register. Compare rFLAGS.
EFLAGS
32-bit (extended) flags register.
elP
16-bit or 32-bit instruction-pointer register. Compare rIP.
EIP
32-bit (extended) instruction-pointer register.
FLAGS
16-bit flags register.
GDTR
Global descriptor table register.
XXXviii Preface

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

GPRs

General-purpose registers. For the 16-bit data size, these are
AX, BX, CX, DX, DI, SI, BP, and SP. For the 32-bit data size,
these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For
the 64-bit data size, these include RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, and R8-R15.

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8-rl5

The 8-bit R8B-R15B registers, or the 16-bit REW-R15W
registers, or the 32-bit R8D-R15D registers, or the 64-bit
R8-R15 registers.

rAX-rSP
The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or
the 32-bit EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP
registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI,
RBP, and RSP registers. Replace the placeholder r with
nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-bit
size.

RAX
64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

Preface

XXXiX

AMDZU

AMDG64 Technology

Endian Order

24593—Rev. 3.11—-December 2005

RDI
64-bit version of the EDI register.

RDX
64-bit version of the EDX register.

rFLAGS
16-bit, 32-bit, or 64-bit flags register. Compare RFLAGS.

RFLAGS
64-bit flags register. Compare rFLAGS.

rIP

16-bit, 32-bit, or 64-bit instruction-pointer register. Compare
RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR

Task priority register (CR8), a new register introduced in
the AMDG64 architecture to speed interrupt management.

TR
Task register.

The x86 and AMDG64 architectures address memory using little-
endian byte-ordering. Multibyte values are stored with their
least-significant byte at the lowest byte address, and they are
illustrated with their least significant byte at the right side.
Strings are illustrated in reverse order, because the addresses of
their bytes increase from right to left.

xI

Preface

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

Related Documents

Peter Abel, IBM PC Assembly Language and Programming,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

Rakesh Agarwal, 80x86 Architecture & Programming: Volume
II, Prentice-Hall, Englewood Cliffs, NJ, 1991.

AMD data sheets and application notes for particular
hardware implementations of the AMDG64 architecture.

AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia
Technology, Sunnyvale, CA, 2000.

AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.

AMD, AMD Extensions to the 3DNow!™ and MMX™
Instruction Sets, Sunnyvale, CA, 2000.

AMD, SYSCALL and SYSRET Instruction Specification
Application Note, Sunnyvale, CA, 1998.

Don Anderson and Tom Shanley, Pentium Processor System
Architecture, Addison-Wesley, New York, 1995.

Nabajyoti Barkakati and Randall Hyde, Microsoft Macro
Assembler Bible, Sams, Carmel, Indiana, 1992.
Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly

Language Programming, Macmillan Publishing Co., New
York, 1994.

Barry B. Brey, Programming the 80286, 80386, 80486, and
Pentium Based Personal Computer, Prentice-Hall, Englewood
Cliffs, NJ, 1995.

Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley,
New York, 1994.

Penn Brumm and Don Brumm, 80386/80486 Assembly
Language Programming, Windcrest McGraw-Hill, 1993.

Geoff Chappell, DOS Internals, Addison-Wesley, New York,
1994.

Chips and Technologies, Inc. Super386 DX Programmer’s
Reference Manual, Chips and Technologies, Inc., San Jose,
1992.

John Crawford and Patrick Gelsinger, Programming the
80386, Sybex, San Francisco, 1987.

Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix
Corporation, Richardson, TX, 1995.

Cyrix Corporation, M1 Processor Data Book, Cyrix
Corporation, Richardson, TX, 1996.

Preface

xli

AMDZU

AMDG64 Technology

24593—Rev. 3.11—-December 2005

Cyrix Corporation, MX Processor MMX Extension Opcode
Table, Cyrix Corporation, Richardson, TX, 1996.

Cyrix Corporation, MX Processor Data Book, Cyrix
Corporation, Richardson, TX, 1997.

Ray Duncan, Extending DOS: A Programmer's Guide to
Protected-Mode DOS, Addison Wesley, NY, 1991.

William B. Giles, Assembly Language Programming for the
Intel 80xxx Family, Macmillan, New York, 1991.

Frank van Gilluwe, The Undocumented PC, Addison-Wesley,
New York, 1994.

John L. Hennessy and David A. Patterson, Computer
Architecture, Morgan Kaufmann Publishers, San Mateo, CA,
1996.

Thom Hogan, The Programmer’s PC Sourcebook, Microsoft
Press, Redmond, WA, 1991.

Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro,
Peer-to-Peer Communications, Menlo Park, CA, 1997.

IBM Corporation, 486SLC Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM
Corporation, Essex Junction, VT, 1993.

IBM Corporation, 80486DXZ2 Processor Floating Point
Instructions, IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide,
IBM Corporation, Essex Junction, VT, 1995.

IBM Corporation, Blue Lightening 486DXZ2 Data Book, IBM
Corporation, Essex Junction, VT, 1994.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Std 754-1985.

Institute of Electrical and Electronics Engineers, IEEE
Standard for Radix-Independent Floating-Point Arithmetic,
ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86
IBM PC and Compatible Computers, Prentice-Hall, Englewood
Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book,
Addison-Wesley, New York, 1995.

xlii

Preface

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

Karen Miller, An Assembly Language Introduction to
Computer Architecture: Using the Intel Pentium, Oxford
University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The
80386/387 Architecture, John Wiley & Sons, New York, 1987.

NexGen Inc., Nx586™ Processor Data Book, NexGen Inc.,
Milpitas, CA, 1993.

NexGen Inc., Nx686™ Processor Data Book, NexGen Inc.,
Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Streaming SIMD
Extensions in the Pentium® III, www.x86.org/articles/sse_pt1/
simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC
Programmer’s Bible, Microsoft Press, Redmond, WA, 1993.

PharLap 386lASM Reference Manual, Pharlap, Cambridge
MA, 1993.

PharLap TNT DOS-Extender Reference Manual, Pharlap,
Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, 1386/i486 Advanced
Programming, Van Nostrand Reinhold, New York, 1993.

Jeffrey P. Royer, Introduction to Protected Mode
Programming, course materials for an onsite class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison
Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM
Programming Manual, SGS-Thomson Corporation, 1995.

Walter A. Triebel, The 80386DX Microprocessor, Prentice-
Hall, Englewood Cliffs, NJ, 1992.

John Wharton, The Complete x86, MicroDesign Resources,
Sebastopol, California, 1994.

Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

- news.microsoft

Preface

xliii

AMDA
AMDG64 Technology 24593—Rev. 3.11-December 2005

xliv Preface

AMDA
24593—Rev. 3.11-December 2005 AMDG64 Technology

1 System-Programming Overview

This entire volume is intended for system-software
developers—programmers writing operating systems, loaders,
linkers, device drivers, or utilities that require access to system
resources. These system resources are generally available only
to software running at the highest-privilege level (CPL=0), also
referred to as privileged software. Privilege levels and their
interactions are fully described in “Segment-Protection
Overview” on page 118.

This chapter introduces the basic features and capabilities of
the AMDG64 architecture that are available to system-software
developers. The concepts include:

m The supported address forms and how memory is organized.

s How memory-management hardware makes use of the
various address forms to access memory.

m The processor operating modes, and how the memory-
management hardware supports each of those modes.

m The system-control registers used to manage system
resources.

s The interrupt and exception mechanism, and how it is used
to interrupt program execution and to report errors.

m Additional, miscellaneous features available to system
software, including support for hardware multitasking,
reporting machine-check exceptions, debugging software
problems, and optimizing software performance.

Many of the legacy features and capabilities are enhanced by
the AMDG64 architecture to support 64-bit operating systems
and applications, while providing backward-compatibility with
existing software.

1.1 Memory Model

The AMDG64 architecture memory model is designed to allow
system software to manage application software and associated
data in a secure fashion. The memory model is backward-
compatible with the legacy memory model. Hardware-
translation mechanisms are provided to map addresses between
virtual-memory space and physical-memory space. The

Chapter 1: System-Programming Overview 1

AMDZU

AMDG64 Technology

111 Memory
Addressing

24593—Rev. 3.11—-December 2005

translation mechanisms allow system software to relocate
applications and data transparently, either anywhere in
physical-memory space, or in areas on the system hard drive
managed by the operating system.

In long mode, the AMDG64 architecture implements a flat-
memory model. In legacy mode, the architecture implements all
legacy memory models.

The AMDG64 architecture supports address relocation. To do
this, several types of addresses are needed to completely
describe memory organization. Specifically, four types of
addresses are defined by the AMDG64 architecture:

m Logical addresses

m Effective addresses, or segment offsets, which are a portion
of the logical address.

m Linear (virtual) addresses
m Physical addresses

Logical Addresses. A logical address is a reference into a
segmented-address space. It is comprised of the segment
selector and the effective address. Notationally, a logical
address is represented as

Logical Address = Segment Selector : Offset

The segment selector specifies an entry in either the global or
local descriptor table. The specified descriptor-table entry
describes the segment location in virtual-address space, its size,
and other characteristics. The effective address is used as an
offset into the segment specified by the selector.

Logical addresses are often referred to as far pointers. Far
pointers are used in software addressing when the segment
reference must be explicit (i.e., a reference to a segment
outside the current segment).

Effective Addresses. The offset into a memory segment is referred
to as an effective address (see “Segmentation” on page 6 for a
description of segmented memory). Effective addresses are
formed by adding together elements comprising a base value, a
scaled-index value, and a displacement value. The effective-
address computation is represented by the equation

Effective Address = Base + (Scale x Index) + Displacement

Chapter 1: System-Programming Overview

AMDA
24593—Rev. 3.11-December 2005 AMDG64 Technology

The elements of an effective-address computation are defined
as follows:

m Base—A value stored in any general-purpose register.
m Scale—A positive value of 1, 2, 4, or 8.

m Index—A two’s-complement value stored in any general-
purpose register.

m Displacement—An 8-bit, 16-bit, or 32-bit two’s-complement
value encoded as part of the instruction.

Effective addresses are often referred to as near pointers. A near
pointer is used when the segment selector is known implicitly
or when the flat-memory model is used.

Long mode defines a 64-bit effective-address length. If a
processor implementation does not support the full 64-bit
virtual-address space, the effective address must be in canonical
form (see “Canonical Address Form” on page 5).

Linear (Virtual) Addresses. The segment-selector portion of a
logical address specifies a segment-descriptor entry in either
the global or local descriptor table. The specified segment-
descriptor entry contains the segment-base address, which is
the starting location of the segment in linear-address space. A
linear address is formed by adding the segment-base address to
the effective address (segment offset), which creates a
reference to any byte location within the supported linear-
address space. Linear addresses are often referred to as virtual
addresses, and both terms are used interchangeably throughout
this document.

Linear Address = Segment Base Address + Effective Address

When the flat-memory model is used—as in 64-bit mode—a
segment-base address is treated as 0. In this case, the linear
address is identical to the effective address. In long mode,
linear addresses must be in canonical address form, as
described in “Canonical Address Form” on page 5.

Physical Addresses. A physical address is a reference into the
physical-address space, typically main memory. Physical
addresses are translated from virtual addresses using page-
translation mechanisms. See “Paging” on page 8 for
information on how the paging mechanism is used for virtual-
address to physical-address translation. When the paging

Chapter 1: System-Programming Overview 3

AMDZU

AMDG64 Technology

1.1.2 Memory
Organization

24593—Rev. 3.11—-December 2005

mechanism is not enabled, the virtual (linear) address is used
as the physical address.

The AMD64 architecture organizes memory into virtual memory
and physical memory. Virtual-memory and physical-memory
spaces can be (and usually are) different in size. Generally, the
virtual-address space is much larger than physical-address
memory. System software relocates applications and data
between physical memory and the system hard disk to make it
appear that much more memory is available than really exists.
System software then uses the hardware memory-management
mechanisms to map the larger virtual-address space into the
smaller physical-address space.

Virtual Memory. Software uses virtual addresses to access
locations within the virtual-memory space. System software is
responsible for managing the relocation of applications and
data in virtual-memory space using segment-memory
management. System software is also responsible for mapping
virtual memory to physical memory through the use of page
translation. The AMD64 architecture supports different virtual-
memory sizes using the following address-translation modes:

m Protected Mode—This mode supports 4 gigabytes of virtual-
address space using 32-bit virtual addresses.

m Long Mode—This mode supports 16 exabytes of virtual-
address space using 64-bit virtual addresses.

Physical Memory. Physical addresses are used to directly access
main memory. For a particular computer system, the size of the
available physical-address space is equal to the amount of main
memory installed in the system. The maximum amount of
physical memory accessible depends on the processor
implementation and on the address-translation mode. The
AMDG64 architecture supports varying physical-memory sizes
using the following address-translation modes:

m Real-Address Mode—This mode, also called real mode,
supports 1 megabyte of physical-address space using 20-bit
physical addresses. This address-translation mode is
described in “Real Addressing” on page 11. Real mode is
available only from legacy mode (see “Legacy Modes” on
page 16).

m Legacy Protected Mode—This mode supports several different
address-space sizes, depending on the translation

Chapter 1: System-Programming Overview

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

1.1.3 Canonical
Address Form

mechanism used and whether extensions to those
mechanisms are enabled.

Legacy protected mode supports 4 gigabytes of physical-
address space using 32-bit physical addresses. Both segment
translation (see “Segmentation” on page6) and page
translation (see “Paging” on page 8) can be used to access
the physical address space, when the processor is running in
legacy protected mode.

When the physical-address size extensions are enabled (see
“Physical-Address Extensions (PAE) Bit” on page 149), the
page-translation mechanism can be extended to support 52-
bit physical addresses. 52-bit physical addresses allow up to
4 petabytes of physical-address space to be supported.
(Currently, the AMD64 architecture supports 40-bit
addresses in this mode, allowing up to 1 terabyte of physical-
address space to be supported.

m Long Mode—This mode is unique to the AMD64 architecture.
This mode supports up to 4 petabytes of physical-address
space using 52-bit physical addresses. Long mode requires
the use of page-translation and the physical-address size
extensions (PAE).

Long mode defines 64 bits of virtual-address space, but
processor implementations can support less. Although some
processor implementations do not use all 64 bits of the virtual
address, they all check bits 63 through the most-significant
implemented bit to see if those bits are all zeros or all ones. An
address that complies with this property is in canonical address
form. In most cases, a virtual-memory reference that is not in
canonical form causes a general-protection exception (#GP) to
occur. However, implied stack references where the stack
address is not in canonical form causes a stack exception (#SS)
to occur. Implied stack references include all push and pop
instructions, and any instruction using RSP or RBP as a base
register.

By checking canonical-address form, the AMDG64 architecture
prevents software from exploiting unused high bits of pointers
for other purposes. Software complying with canonical-address
form on a specific processor implementation can run
unchanged on long-mode implementations supporting larger
virtual-address spaces.

Chapter 1: System-Programming Overview 5

AMDZU

AMDG64 Technology

24593—Rev. 3.11—-December 2005

1.2 Memory Management

12.1 Segmentation

Memory management consists of the methods by which
addresses generated by software are translated by
segmentation and/or paging into addresses in physical memory.
Memory management is not visible to application software. It is
handled by the system software and processor hardware.

Segmentation was originally created as a method by which
system software could isolate software processes (tasks), and
the data used by those processes, from one another in an effort
to increase the reliability of systems running multiple processes
simultaneously.

The AMDG64 architecture is designed to support all forms of
legacy segmentation. However, most modern system software
does not use the segmentation features available in the legacy
x86 architecture. Instead, system software typically handles
program and data isolation using page-level protection. For this
reason, the AMD64 architecture dispenses with multiple
segments in 64-bit mode and, instead, uses a flat-memory
model. The elimination of segmentation allows new 64-bit
system software to be coded more simply, and it supports more
efficient management of multi-processing than is possible in
the legacy x86 architecture.

Segmentation is, however, used in compatibility mode and
legacy mode. Here, segmentation is a form of base memory-
addressing that allows software and data to be relocated in
virtual-address space off of an arbitrary base address. Software
and data can be relocated in virtual-address space using one or
more variable-sized memory segments. The legacy x86
architecture provides several methods of restricting access to
segments from other segments so that software and data can be
protected from interfering with each other.

In compatibility and legacy modes, up to 16,383 unique
segments can be defined. The base-address value, segment size
(called a limit), protection, and other attributes for each
segment are contained in a data structure called a segment
descriptor. Collections of segment descriptors are held in
descriptor tables. Specific segment descriptors are referenced or
selected from the descriptor table using a segment selector
register. Six segment-selector registers are available, providing
access to as many as six segments at a time.

Chapter 1: System-Programming Overview

AMDA
24593—Rev. 3.11-December 2005 AMDG64 Technology

Figure 1-1 shows an example of segmented memory.
Segmentation is described in Chapter 4, “Segmented Virtual

Memory.”
Virtual Address
Space
Effective Address
Descriptor Table ‘ __________________
Selectors Virtual Address
G * Limit 4&)
.................. 9
DS Base |
ES
P —— Segment
s * Limit »
Base
SS >
+ >
R Segment

513-201.eps

Figure 1-1. Segmented-Memory Model

Flat Segmentation. One special case of segmented memory is the
flat-memory model. In the legacy flat-memory model, all
segment-base addresses have a value of 0, and the segment
limits are fixed at 4 Gbytes. Segmentation cannot be disabled
but use of the flat-memory model effectively disables segment
translation. The result is a virtual address that equals the
effective address. Figure 1-2 on page 8 shows an example of the
flat-memory model.

Chapter 1: System-Programming Overview 7

AMDZU

AMDG64 Technology

24593—Rev. 3.11—-December 2005

Software running in 64-bit mode automatically uses the flat-
memory model. In 64-bit mode, the segment base is treated as if
it were 0, and the segment limit is ignored. This allows an
effective addresses to access the full virtual-address space
supported by the processor.

Virtual Address
Space

Effective Address

A4

Virtual Address

Flat Segment

513-202.ps

Figure 1-2. Flat Memory Model

12.2 Paging

Paging allows software and data to be relocated in physical-
address space using fixed-size blocks called physical pages. The
legacy x86 architecture supports three different physical-page
sizes of 4 Kbytes, 2 Mbytes, and 4 Mbytes. As with segment
translation, access to physical pages by lesser-privileged
software can be restricted.

Page translation uses a hierarchical data structure called a
page-translation table to translate virtual pages into physical-
pages. The number of levels in the translation-table hierarchy
can be as few as one or as many as four, depending on the
physical-page size and processor operating mode. Translation
tables are aligned on 4-Kbyte boundaries. Physical pages must
be aligned on 4-Kbyte, 2-Mbyte, or 4-Mbyte boundaries,
depending on the physical-page size.

Chapter 1: System-Programming Overview

AMDA
24593—Rev. 3.11-December 2005 AMDG64 Technology

Each table in the translation hierarchy is indexed by a portion
of the virtual-address bits. The entry referenced by the table
index contains a pointer to the base address of the next-lower-
level table in the translation hierarchy. In the case of the lowest-
level table, its entry points to the physical-page base address.
The physical page is then indexed by the least-significant bits
of the virtual address to yield the physical address.

Figure 1-3 shows an example of paged memory with three levels
in the translation-table hierarchy. Paging is described in
Chapter 5, “Page Translation and Protection.”

Physical Address
Virtual Address Space

v

A
o
=0
=
K,
o
(=
pd
a.
a
=
[9°]
193]
N

v Yy

— b1 | e
Table 1 Table 2 Table 3

Page Translation Tables
Physical Page

\ 4

Page Table Base Address

513-203.eps

Figure 1-3. Paged Memory Model

Software running in long mode is required to have page
translation enabled.

Chapter 1: System-Programming Overview 9

AMDZU

AMDG64 Technology

1.2.3 Mixing
Segmentation and
Paging

24593—Rev. 3.11—-December 2005

Memory-management software can combine the use of
segmented memory and paged memory. Because segmentation
cannot be disabled, paged-memory management requires some
minimum initialization of the segmentation resources. Paging
can be completely disabled, so segmented-memory
management does not require initialization of the paging
resources.

Segments can range in size from a single byte to 4 Gbytes in
length. It is therefore possible to map multiple segments to a
single physical page and to map multiple physical pages to a
single segment. Alignment between segment and physical-page
boundaries is not required, but memory-management software
is simplified when segment and physical-page boundaries are
aligned.

The simplest, most efficient method of memory management is
the flat-memory model. In the flat-memory model, all segment
base addresses have a value of 0 and the segment limits are
fixed at 4 Gbytes. The segmentation mechanism is still used
each time a memory reference is made, but because virtual
addresses are identical to effective addresses in this model, the
segmentation mechanism is effectively ignored. Translation of
virtual (or effective) addresses to physical addresses takes
place using the paging mechanism only.

Because 64-bit mode disables segmentation, it uses a flat,
paged-memory model for memory management. The 4 Gbyte
segment limit is ignored in 64-bit mode. Figure 1-4 on page 11
shows an example of this model.

10

Chapter 1: System-Programming Overview

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology
Virtual Address Physical Address
Space Space
Effective Address »| Virtual Address | — g I -P_h}/s_ic_al_ éqd_n?s_s -
Page Translation Tables
Page Frame
Flat Segment
L { Page Table Base Address
513-204.eps

Figure 1-4. 64-Bit Flat, Paged-Memory Model

124 Real Addressing

Real addressing is a legacy-mode form of address translation
used in real mode. This simplified form of address translation is
backward compatible with 8086-processor effective-to-physical
address translation. In this mode, 16-bit effective addresses are
mapped to 20-bit physical addresses, providing a 1-Mbyte
physical-address space.

Segment selectors are used in real-address translation, but not
as an index into a descriptor table. Instead, the 16-bit segment-
selector value is shifted left by 4 bits to form a 20-bit segment-
base address. The 16-bit effective address is added to this 20-bit
segment base address to yield a 20-bit physical address. If the
sum of the segment base and effective address carries over into
bit 20, that bit can be optionally truncated to mimic the 20-bit

Chapter 1: System-Programming Overview 11

AMDZU

AMDG64 Technology

Figure 1-5.

1.3

24593—Rev. 3.11—-December 2005

address wrapping of the 8086 processor by using the A20M#
input signal to mask the A20 address bit.

Real-address translation supports a 1-Mbyte physical-address
space using up to 64K segments aligned on 16-byte boundaries.
Each segment is exactly 64K bytes long. Figure 1-5 shows an
example of real-address translation.

Effective Address

19

v

0 19

0000 ¢ Effective Address

Selectors

cs

v

DS

ES

FS
GS
SS

0

Selector

© 0000

)4
+
A

Physical Address

Real-Address Memory Model

Operating Modes

513-205.eps

The legacy x86 architecture provides four operating modes or
environments that support varying forms of memory
management, virtual-memory and physical-memory sizes, and
protection:

Real Mode.
Protected Mode.

Virtual-8086 Mode.

System Management Mode.

12

Chapter 1: System-Programming Overview

AMDZU

24593—Rev. 3.11—-December 2005

AMDG64 Technology

The AMDG64 architecture supports all these legacy modes, and it
adds a new operating mode called long mode. Table 1-1 shows
the differences between long mode and legacy mode. Software
can move between all supported operating modes as shown in
Figure 1-6 on page 14. Each operating mode is described in the
following sections.

Table 1-1. Operating Modes
o Defaults' Maximum
System Application Register GPR
Mode Software Recompile | Address | Operand E 2| width
Required | Required Size Size xtensions (bits)
(bits) (bits)
64-Bit yes 64 yes 64
Mode New 9)
3
Long Mode - 64-bit S 32
Compatibility no no 3
Mode 16 16
Protected 32 32 37
Mode Legacy 32- 16 16
bit OS
Legacy Virtual-8086 no no
Mode Mode
16 16 32
Legacy 16-
Real Mode bit OS
Note:
1. Defaults can be overridden in most modes using an instruction prefix or system control bit.
2. Register extensions includes eight new GPRs and eight new XMM registers (also called SSE registers).
3. Long mode supports only x86 protected mode. It does not support x86 real mode or virtual-8086 mode.
Chapter 1: System-Programming Overview 13

AMDA
AMDG64 Technology 24593—Rev. 3.11-December 2005

Long Mode

CS.L=1 SMI#
64-bit r .(Compatibility

Mode Mode

RSM

CS.1=0

CS.L=0

CRO.PG=0
then EFERLME=0

EFER.LME=1, CR4.PAE=1
then CR0O.PG=1

RSM SMIs

RSM SMIs

EFLAGS.VM=0 ' 5 Reset
Virtual
8086

Mode

Protected
Mode

EFLAGS.VM=1

SMIz# RSM

System
Management
Mode

‘.. Reset _-- 513-206.eps

Figure 1-6. Operating Modes of the AMD64 Architecture

131 Long Mode Long mode consists of two submodes: 64-bit mode and
compatibility mode. 64-bit mode supports several new features,
including the ability to address 64-bit virtual-address space.
Compatibility mode provides binary compatibility with existing
16-bit and 32-bit applications when running on 64-bit system
software.

Throughout this document, references to long mode refer
collectively to both 64-bit mode and compatibility mode. If a
function is specific to either 64-bit mode or compatibility mode,
then those specific names are used instead of the name long
mode.

14 Chapter 1: System-Programming Overview

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

1.3.2 64-Bit Mode

1.3.3 Compatibility
Mode

Before enabling and activating long mode, system software
must first enable protected mode. The process of enabling and
activating long mode is described in Chapter 14, “Processor
Initialization and Long-Mode Activation.” Long mode features
are described throughout this document, where applicable.

64-bit mode, a submode of long mode, provides support for 64-
bit system software and applications by adding the following
new features:

m 64-bit virtual addresses (processor implementations can
have fewer).

m Register extensions through a new instruction prefix (REX):
- Adds eight GPRs (R8-R15).
- Widens GPRs to 64 bits.

- Adds eight 128-bit streaming SIMD extension (SSE)
registers (XMM8-XMM15).

m 64-bit instruction pointer (RIP).
m New RIP-relative data-addressing mode.

m Flat-segment address space with single code, data, and stack
space.

The mode is enabled by the system software on an individual
code-segment basis. Although code segments are used to enable
and disable 64-bit mode, the legacy segmentation mechanism is
largely disabled. Page translation is required for memory
management purposes. Because 64-bit mode supports a 64-bit
virtual-address space, it requires 64-bit system software and
development tools.

In 64-bit mode, the default address size is 64 bits, and the
default operand size is 32 bits. The defaults can be overridden
on an instruction-by-instruction basis using instruction
prefixes. A new REX prefix is introduced for specifying a 64-bit
operand size and the new registers.

Compatibility mode, a submode of long mode, allows system
software to implement binary compatibility with existing 16-bit
and 32-bit x86 applications. It allows these applications to run,
without recompilation, under 64-bit system software in long
mode, as shown in Table 1-1 on page 13.

In compatibility mode, applications can only access the first
4 Gbytes of virtual-address space. Standard x86 instruction

Chapter 1: System-Programming Overview 15

AMDZU

AMDG64 Technology

1.3.4 Legacy Modes

24593—Rev. 3.11—-December 2005

prefixes toggle between 16-bit and 32-bit address and operand
sizes.

Compatibility mode, like 64-bit mode, is enabled by system
software on an individual code-segment basis. Unlike 64-bit
mode, however, segmentation functions the same as in the
legacy-x86 architecture, using 16-bit or 32-bit protected-mode
semantics. From an application viewpoint, compatibility mode
looks like a legacy protected-mode environment. From a
system-software viewpoint, the long-mode mechanisms are used
for address translation, interrupt and exception handling, and
system data-structures.

Legacy mode consists of three submodes: real mode, protected
mode, and virtual-8086 mode. Protected mode can be either
paged or unpaged. Legacy mode preserves binary compatibility
not only with existing x86 16-bit and 32-bit applications but also
with existing x86 16-bit and 32-bit system software.

Real Mode. In this mode, also called real-address mode, the
processor supports a physical-memory space of 1 Mbyte and
operand sizes of 16 bits (default) or 32 bits (with instruction
prefixes). Interrupt handling and address generation are nearly
identical to the 80286 processor's real mode. Paging is not
supported. All software runs at privilege level 0.

Real mode is entered after reset or processor power-up. The
mode is not supported when the processor is operating in long
mode because long mode requires that paged protected mode
be enabled.

Protected Mode. In this mode, the processor supports virtual-
memory and physical-memory spaces of 4 Gbytes and operand
sizes of 16 or 32 bits. All segment translation, segment
protection, and hardware multitasking functions are available.
System software can use segmentation to relocate effective
addresses in virtual-address space. If paging is not enabled,
virtual addresses are equal to physical addresses. Paging can be
optionally enabled to allow translation of virtual addresses to
physical addresses and to use the page-based memory-
protection mechanisms.

In protected mode, software runs at privilege levels 0, 1, 2, or 3.
Typically, application software runs at privilege level 3, the
system software runs at privilege levels 0 and 1, and privilege

16

Chapter 1: System-Programming Overview

AMDZU

24593—Rev. 3.11-December 2005 AMDG64 Technology

1.3.5 System
Management Mode
(SMM)

level 2 is available to system software for other uses. The 16-bit
version of this mode was first introduced in the 80286 processor.

Virtual-8086 Mode. Virtual-8086 mode allows system software to
run 16-bit real-mode software on a virtualized-8086 processor.
In this mode, software written for the 8086, 8088, 80186, or
80188 processor can run as a privilege-level-3 task under
protected mode. The processor supports a virtual-memory
space of 1 Mbytes and operand sizes of 16 bits (default) or 32
bits (with instruction prefixes)