Hands-on CUDA Optimization

CUDA Workshop
Exercise

Today we have a progressive exercise

The exercise is broken into 5 steps

If you get lost you can always catch up by grabbing the corresponding directory

If you need to peak at the solution for each step it is found in the directory named “solution”

To start make a copy of the step1 directory

We will now review the code
void transpose(float in[][], float out[][], int N) {
 for(int j=0; j < N; j++)
 for(int i=0; i < N; i++)
 out[j][i] = in[i][j];
}

- Commonly used in applications
 - BLAS and FFT
- Stresses memory systems
 - Strided reads or writes
void transpose(float in[], float out[], int N) {
 for(int j=0; j < N; j++)
 for(int i=0; i < N; i++)
 out[i*N+j] = in[j*N+i];
}

- This indexing is often used in numerical codes
- We will use this indexing during this presentation
void transpose(float in[], float out[], int N) {
 #pragma omp parallel for
 for(int j=0; j < N; j++)
 #pragma omp parallel for
 for(int i=0; i < N; i++)
 out[i*N+j] = in[j*N+i];
}

%> export OMP_NUM_THREADS=16
%> aprun -n 1 -d 16 ./transpose

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU+OMP</td>
<td>4.9 GB/s</td>
</tr>
</tbody>
</table>
Exercise: Compile with NVCC

- Modify make file to build with nvcc
 - For CUDA filenames must end in .cu
 - Specify architecture
 - \(-\text{arch=sm}_35\)
 - Pass an argument to the host compiler using \(-\text{Xcompiler}\)
 - \(-\text{Xcompiler} \text{--fopenmp}\)

- Recompile and run
 \%
 \> module load cudatoolkit
 \> make clean
 \> make
 \> aprun \--n 1 \--d 16 \./transpose

- Notice nvcc can build CPU only applications
- It actually passes host code through to the host compiler
Exercise: Add CUDA APIs

- Search for "TODO" and fill in cuda code
- Start with the host code
 - Create separate pointers for CUDA memory
 - Allocate & free memory device memory
 - cudaMalloc(**ptr, size_t size)
 - cudaFree(*ptr)
 - Copy data between CPU and GPU
 - cudaMemcpy(*dst, *src, size_t size, cudaMemcpyKind)
 - cudaMemcpyKind: cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
 - Synchronize the device to ensure timing is correct
 - cudaDeviceSynchronize()
 - Pass device pointers into transpose function
Exercise: Write Our First Kernel

Create transpose kernel

- __global__ says this is a kernel
- Parallelize over rows
 - 1 thread per row
 - Replace outer loop with index calculation
 - 1D indexing
 - blockIdx.x*blockIdx.x+threadIdx.x

Launch kernel

- <<<gridDim,blockDim>>>>
- blockDim = 256 threads
Results

- Initial implementation 1.5x faster
- K20X theoretical bandwidth is 250 GB/s
 - Low percent of peak
 - Why?

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU+OMP</td>
<td>4.9 GB/s</td>
</tr>
<tr>
<td>CUDA-1D</td>
<td>7.2 GB/s</td>
</tr>
</tbody>
</table>
Tools for Profiling

Profile-driven optimization

Tools:
- **nsight**: Visual Studio Edition or Eclipse Edition
- **nvvp**: NVIDIA Visual Profiler
- **nvprof**: Command-line profiling
Introducing NVVP

- Cuda profiling tool
 - Analyzes performance
 - Identifies hotspots
 - Suggests improvements

- Let’s open NVVP
 - Import profiles
 - Interpret results
NVVP: Step1

- Always look at occupancy first!
- Each block is scheduled on an SM
 - There are 14 SMs on K20X
 - Only 4 blocks!
- Bottleneck
 - Grid size
 - Most of the GPU is idle
- Solution
 - Express more parallelism
Exercise: Express More Parallelism

The CPU version parallelizes over rows and columns

Lets do the same on the GPU

- Replace columns loop with an index calculation
- Change launch configuration to 2D
 - blockSize = 32x32
 - <<<gridDim,blockDim>>>
 - dim3(xdim,ydim)
- Don’t forget to update both gridDim and blockDim
Results

- We are now at a 12x speedup over the parallel CPU version
- But how are we doing overall?
 - Peak for K20X is 250 GB/s
 - ~24% of peak
- Why is bandwidth utilization low?

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU+OMP</td>
<td>4.9 GB/s</td>
</tr>
<tr>
<td>GPU-1D</td>
<td>7.2 GB/s</td>
</tr>
<tr>
<td>GPU-2D</td>
<td>59 GB/s</td>
</tr>
</tbody>
</table>

Back to NVVP
NVVP Profile: Step2

- Occupancy is now much better
- All SMs have work
- DRAM utilization is low
- Global store efficiency is low
- Global memory replay overhead is high
- Bottleneck
 - Uncoalesced stores
Use NVVP to Find Coalescing Problems

- Compile with -lineinfo

```c
__global__ void gpuTranspose_kernel(int rows, int cols)
{
    int i; int j;
    i = blockIdx.x * blockDim.x + threadIdx.x;
    j = blockIdx.y * blockDim.y + threadIdx.y;
    out[i*cols + j] = in[j*cols + i];
}
```

Uncoalesced Global Memory Accesses

Global memory loads and stores have poor access patterns, leading to inefficient use of global memory bandwidth. Select from the table below to see the source code which generates the inefficient global loads and stores.

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File: main.c</td>
<td></td>
</tr>
</tbody>
</table>

| Line: 41 | Global Store L2 Transactions/Access = 32.0 [1048576 L2 transactions for 32768 total executions] |
What is an Uncoalesced Global Store?

- Global memory access happens in transactions of 32 or 128 bytes

 Coalesced access:
 - A group of 32 contiguous threads (“warp”) accessing adjacent words
 - Few transactions and high utilization

 Uncoalesced access:
 - A warp of 32 threads accessing scattered words
 - Many transactions and low utilization
Memory Coalescing

- When we write column \(j \) memory access pattern is strided

Solution
- Read coalesced into shared memory
- Transpose in shared memory
- Write coalesced from shared memory
Transposing with Shared Memory

Read block coalesced into shared memory
Transposing with Shared Memory

- Read block coalesced into shared memory
- Transpose shared memory indices
Transposing with Shared Memory

- Read block_ij coalesced into shared memory
- Transpose shared memory indices
- Write transposed block to global memory
Exercise: Stage Through Shared Memory

- Allocate a static 2D array using __shared__ keyword
- Read from global to shared memory
 - Global read indices are unchanged
 - Shared write indices use threadIdx.{x,y}
- Write from shared to global memory
 - Global write indices: transpose block
 - Shared read indices: transpose threads
- Sync between read and write: __syncthreads()
Results

- We got a small improvement but we are still low compared to peak

- Back to NVVP

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU+OMP</td>
<td>4.9 GB/s</td>
</tr>
<tr>
<td>GPU-1D</td>
<td>7.2 GB/s</td>
</tr>
<tr>
<td>GPU-2D</td>
<td>59 GB/s</td>
</tr>
<tr>
<td>GPU-Shared</td>
<td>73 GB/s</td>
</tr>
</tbody>
</table>
Global Store Efficiency is now 100%
Global memory replay are much lower
Shared memory replays are much higher

Bottleneck
- Shared memory bank conflicts
Shared Memory Organization

- Organized in 32 independent banks
- Optimal access: all words from different banks
 - Separate banks per thread
 - Banks can multicast
- Multiple words from same bank serialize

Any 1:1 or multicast pattern
Shared Memory: Avoiding Bank Conflicts

Example: 32x32 SMEM array

- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)

Bank 0
Bank 1
...
Bank 31

Accesses along row produces 0 bank conflicts
Accesses along column produces 32 bank conflicts
Shared Memory: Avoiding Bank Conflicts

- Add a column for padding:
 - 32x33 SMEM array

- Warp accesses a column:
 - 32 different banks, no bank conflicts

```
<table>
<thead>
<tr>
<th>Bank 0</th>
<th>Bank 1</th>
<th>...</th>
<th>Bank 31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>31</td>
</tr>
</tbody>
</table>

Accesses along row produces 0 bank conflicts
Accesses along column produces 0 bank conflicts
```
Exercise: Fix bank conflicts

- Add padding
Results

- Getting much better
- Back to NVVP

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU+OMP</td>
<td>4.9 GB/s</td>
</tr>
<tr>
<td>GPU-1D</td>
<td>7.2 GB/s</td>
</tr>
<tr>
<td>GPU-2D</td>
<td>59 GB/s</td>
</tr>
<tr>
<td>GPU-Shared</td>
<td>73 GB/s</td>
</tr>
<tr>
<td>GPU-no-conflicts</td>
<td>114 GB/s</td>
</tr>
</tbody>
</table>
NVVP Profile: Step4

- Bank conflicts are fixed
- DRAM utilization is >50%

Can we do better?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>90.146 µs</td>
</tr>
<tr>
<td>Grid Size</td>
<td>[32,32,1]</td>
</tr>
<tr>
<td>Block Size</td>
<td>[32,32,1]</td>
</tr>
<tr>
<td>Registers/Thread</td>
<td>10</td>
</tr>
<tr>
<td>Shared Memory/Block</td>
<td>4.125 KB</td>
</tr>
<tr>
<td>Memory</td>
<td></td>
</tr>
<tr>
<td>Global Load Efficiency</td>
<td>100%</td>
</tr>
<tr>
<td>Global Store Efficiency</td>
<td>100%</td>
</tr>
<tr>
<td>Local Memory Overhead</td>
<td>0%</td>
</tr>
<tr>
<td>DRAM Utilization</td>
<td>57.1% (113.34 GB/s)</td>
</tr>
<tr>
<td>Instruction</td>
<td></td>
</tr>
<tr>
<td>Branch Divergence Overhead</td>
<td>0%</td>
</tr>
<tr>
<td>Total Replay Overhead</td>
<td>9.1%</td>
</tr>
<tr>
<td>Shared Memory Replay Overhead</td>
<td>0%</td>
</tr>
<tr>
<td>Global Memory Replay Overhead</td>
<td>9.1%</td>
</tr>
<tr>
<td>Global Cache Replay Overhead</td>
<td>0%</td>
</tr>
<tr>
<td>Local Cache Replay Overhead</td>
<td>0%</td>
</tr>
<tr>
<td>Occupancy</td>
<td></td>
</tr>
<tr>
<td>Achieved</td>
<td>86.5%</td>
</tr>
<tr>
<td>Theoretical</td>
<td>100%</td>
</tr>
</tbody>
</table>

profiles/step4.nvvp
NVVP Profile: Step 4

- DRAM Utilization is still a little low.
 - Aim for 70%-80% of peak

Problem:
- Kepler requires 100+ lines in flight per SM to saturate DRAM
- 1 line-in-flight per warp @ 100% occupancy = 64 lines in flight

Solution:
- Process multiple elements per thread
 - Instruction-level parallelism
 - More lines-in-flight
 - Less __syncthreads overhead
 - Amortize cost of indexing and thread launch

Table:

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>90.146 μs</td>
</tr>
<tr>
<td>Grid Size</td>
<td>[32,32,1]</td>
</tr>
<tr>
<td>Block Size</td>
<td>[32,32,1]</td>
</tr>
<tr>
<td>Registers/Thread</td>
<td>10</td>
</tr>
<tr>
<td>Shared Memory/Block</td>
<td>4.125 KB</td>
</tr>
<tr>
<td>DRAM Utilization</td>
<td>57.1% (113.34 GB/s)</td>
</tr>
</tbody>
</table>

© NVIDIA 2013

profiles/step4.nvvp
Exercise: Multiple Elements Per Thread

- Change block size to 32 x 4
 - BLOCKY = 4
 - NUM_ELEMS_PER_THREAD = 8
 - Should the grid size also change?

- Loop over 8 elements on input
 - Update indexing whenever you see threadIdx.y and threadDim.y

- Loop over 8 elements on output
 - Update indexing whenever you see threadIdx.y and threadDim.y

- Unroll all loops using #pragma unroll
NVVP Profile: Step5

- 80% of peak bandwidth
- Occupancy dropped
 - This is not a problem
 - ILP makes up for loss in occupancy
 - In general ILP is as good as high occupancy

<table>
<thead>
<tr>
<th>Duration</th>
<th>56.13 μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Size</td>
<td>[32,32,1]</td>
</tr>
<tr>
<td>Block Size</td>
<td>[32,4,1]</td>
</tr>
<tr>
<td>Registers/Thread</td>
<td>24</td>
</tr>
<tr>
<td>Shared Memory/Block</td>
<td>4.125 KB</td>
</tr>
</tbody>
</table>

- Memory
 - Global Load Efficiency: 100%
 - Global Store Efficiency: 100%
 - Local Memory Overhead: 0%
 - DRAM Utilization: 79.9% (158.5 GB/s)

- Instruction
 - Branch Divergence Overhead: 0%
 - Total Replay Overhead: 9.9%
 - Shared Memory Replay Overhead: 0%
 - Global Memory Replay Overhead: 9.9%
 - Global Cache Replay Overhead: 0%
 - Local Cache Replay Overhead: 0%

- Occupancy
 - Achieved: 64.3%
 - Theoretical: 68.8%

profiles/step5.nvvp
Final Results

- Use NVVP to identify bottlenecks
- Use optimization techniques to eliminate bottlenecks
- Refer to GTC archives for complete optimization techniques

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU+OMP</td>
<td>4.9 GB/s</td>
</tr>
<tr>
<td>GPU-1D</td>
<td>7.2 GB/s</td>
</tr>
<tr>
<td>GPU-2D</td>
<td>59 GB/s</td>
</tr>
<tr>
<td>GPU-Shared</td>
<td>73 GB/s</td>
</tr>
<tr>
<td>GPU-no-conflicts</td>
<td>114 GB/s</td>
</tr>
<tr>
<td>GPU-multi-element</td>
<td>173 GB/s</td>
</tr>
</tbody>
</table>

www.gputechconf.com/gtcnew/on-demand-gtc.php
Search “GPU Performance Analysis and Optimization”