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A more descriptive title might be

“Toward improved linear solvers for large-scale multi-GPU
calculations in Lattice QCD”
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QCD

Fundamental interactions in nature:
Gravity
Electromagnetism

Weak Nuclear Interaction
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Strong Nuclear Interaction
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QCD

Quantum ChromoDynamics (QCD) is the theory of the
Strong Interaction

@ QCD is a Relativistic Quantum Field Theory - Quantum
Mechanics + Special Relativity

@ It describes the interaction of fundamental matter particles
called quarks and force carriers called gluons

@ Analogy with electromagnetism: quark < electron, gluon <
photon (but behavior is very different)

@ Quarks bind together to form protons and neutrons = atomic
nuclei
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Why QCD is interesting

@ Applications in Nuclear Physics
@ Heavy-ion physics / physics of the early universe

@ Search for new physics beyond the Standard Model

@ Similarities with condensed matter systems - graphene, cold
atoms
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Lattice QCD

@ In general, QCD is not amenable to analytic methods
@ Wilson 1974 - solve QCD on a computer

@ Space and time is approximated by a 4D lattice, quarks are
associated with lattice sites and gluons reside on the links
between sites
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@ Multiple discretization schemes in use. MILC uses the
Highly-Improved Staggered Quark (HISQ) formalism
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Linear solves in Lattice QCD

@ Most (2 70%) time in a lattice calculation is spent solving
the linear system

A =n (1)
@ ¢, n are quark fields, and A is a sparse matrix
o In state-of-the-art calculations, rank(A) ~ 10°
@ In the HISQ formalism, A = QfQ, where Q is the HISQ
matrix, with stencil

(17 points in 4 dimensions)
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Linear solves in Lattice QCD

@ Solve Ap = n using iterative Krylov-subspace methods

@ In the HISQ formalism, A is Hermitian positive-definite and
Conjugate Gradient is the Krylov method of choice

@ In fact, for this particular system, the residual decreases
monotonically
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Lattice QCD on GPUs

@ QUDA: An opensource library for QCD on Nvidia GPUs
lattice.github.com/quda

@ Written in C++ and CUDA
@ Linear-solver support for multiple lattice formulations

@ QUDA linear-solve performance on a 36 lattice on a single
K20X is 160 Gflops for single- and mixed-precision CG and 80
Gflops for double-precision CG

e Mixed double/single-precision solver uses reliable
updating (Sleijpen and van der Vorst)
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lattice.github.com/quda

Limits on strong scaling

@ This performance is not sustained on large numbers of GPUs

@ The lattice is decomposed into regular subdomains, which are
assigned to different GPUs

@ Each application of A involves the exchange of data between
GPUs (Q involves communication of quark field in a boundary
region three-lattice sites wide)

@ In practice, linear solves are communication bound
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Reducing inter-processor communication

@ Domain decomposition:
Solve the preconditioned linear system

MA¢ = Mmn,

where M ~ A~!, but involves less or no inter-processor
communication [Additive Schwarz method, Schwarz
alternating procedure |.

@ Reduce number of applications of A and hence inter-GPU
communication

@ Only ever need to evaluate matrix-vector products Mp
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Non-overlapping Additive Schwarz preconditioning

o To compute Mp, use iterative solver to evaluate A=1p on
each lattice subdomain ignoring interprocessor communication

Np 1—
Mp = E,‘:Dl A,' 1Pi

_
~

@ Dirichlet boundary conditions on each subdomain =
k (Ai) < k(A)

@ Since M is a preconditioner, implement approximately
(half-precision data types, small number of inner-solver
iterations, use only a subset of points in the HISQ stencil)
Mp ~ Z,{Vle Arlpi

@ Use MR or steepest-descent algorithm in the preconditioning
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@ Non-overlapped domain-decomposition reduces inter-processor
communication by 40 to 50 percent

Preconditioned linear solves on a 96°x192 lattice
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@ ...which translates into a 30% reduction in solve times on
large numbers of GPUs (= 1024)

Linear solves at the strange-quark mass on a 96°x192 lattice
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@ However, better value at lower numbers of GPUs, where
simple Additive Schwarz wins you little

Time for linear solves at the light-quark mass on a 96°x192 lattice
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@ Can we improve on this?
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Overlapped Additive Schwarz preconditioning

@ In the preconditioner, overlap domains to mitigate boundary
effects

@ However, the (restricted) preconditioning operator is not
Hermitian = cannot be used with CG
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Overlapped Additive Schwarz with GCR

@ The General Conjugate Residual (GCR) algorithm supports
non-Hermitian matrices

@ but an iteration of GCR is more expensive (> x2) than an
iteration of CG

Tests on 963x 192 lattice on 256 (1x4x4x16) GPUs
Domain overlap widths of 0, 2, and 4 lattice sites
Niryiov = 60 in GCR solver

Overlapping subdomains reduced number of outer-solver
iterations (which involve communication) by a factor of 3.7

@ However, preconditioned GCR still lags behind CG
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@ Have implemented Additive Schwarz preconditioning for the
HISQ formalism in the QUDA QCD library

@ Non-overlapped domains reduce inter-processor
communication by about 30% on large (above-optimal)
numbers of GPUs

@ Overlapping domains further reduces inter-processor
communication, but this improvement is offset by a large
increase in arithmetic workload
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Ongoing and future work

@ Optimal approach may involve limited inter-processor
communication in preconditioning step

@ An improved preconditioning scheme, which further lowers the
condition number of the system, could facilitate half-precision
data types in the outer-solver iteration

@ Use domain-decomposed solvers as smoothers in a multi-grid
solver cf. Frommer et al. arXiv:1303.1377

Justin Foley Lattice QCD on Blue Waters



Supplemental

@ Performance of domain-decomposed CG solver vs.
unpreconditioned CG solver

Linear solves at the strange-quark mass on a 96°x192 lattice
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@ Compare to solve times on slide 14
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