
C O M P U T E | S T O R E | A N A L Y Z E
1

Cray Programming Environment

Update

Luiz DeRose & Heidi Poxon

Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
2

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual
property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers
and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray
Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of
Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect
actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, URIKA and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER
CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks,
and trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense
from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Other names and brands may be claimed as the property of others. Other product and service names mentioned herein are the
trademarks of their respective owners.

Copyright 2016 Cray Inc.

March 2016 Cray Inc. Proprietary © 2016
2

C O M P U T E | S T O R E | A N A L Y Z E
3

Schedule (times are guidelines)

March 2016 Cray Inc. Proprietary © 2016

09:30 – 09:45 Introductions and Goals

09:45 – 10:00 Cray Programming Environment overview

10:00 – 10:30 CCE Overview and recent enhancements

10:30 – 10:45 Break

10:45 – 11:45 OpenACC and OpenMP 4

11:45 – 12:00 Recent MPI enhancements

12:00 – 13:45 Lunch

13:00 – 13:45 CrayPat overview and recent enhancements

13:45 – 14:30 Using Reveal to add OpenMP

14:30 – 14:45 Break

14:45 – 15:00 Overview of libsci / libsci_acc

15:00 – 15:15 Where to find help

15:15 – 15:30 PE Roadmap

15:30 – 16:00 Questions / Recap

16:00 Adjourn

C O M P U T E | S T O R E | A N A L Y Z E
4

Compile

The Programming Environment Mission
 Focus on Performance and Programmability

• It is the role of the Programming Environment to close the gap between observed
performance and achievable performance

 Support the application
development life cycle by providing
a tightly coupled environment with
compilers, libraries, and tools that will
hide the complexity of the system

• Address issues of scale and
complexity of HPC systems

• Target ease of use with extended
functionality and increased
automation

• Close interaction with users
 For feedback targeting functionality

enhancements

application

information

Debug

information
Export/Import

Program

Analyses Performance

Analysis

Queries for

Application

Optimization

Compiler

information

Port

Application

Debug

Analyze

March 2016 Cray Inc. Proprietary © 2016
4

C O M P U T E | S T O R E | A N A L Y Z E
5

Cray Programming Environment

I/O Libraries

NetCDF

HDF5

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

Programming
Languages

Fortran

C

C++

Chapel

 CrayPat & Cray

Apprentice2

Tools

Debuggers

DDT

lgdb

TotalView

Debugging Tools

ATP

Performance Analysis

STAT

Porting Tools

Reveal

CCDB

Programming

models

Distributed

Memory

(Cray MPT)

• MPI

• SHMEM

• GA

PGAS

• UPC

• Fortran Coarrays

• CoArray C++

Shared Memory

• OpenMP 4.0

• OpenACC 2.0

Optimized Scientific

Libraries

BLAS

LAPACK

ScaLAPACK

Iterative

Refinement

Toolkit

FFTW

Cray PETSc

(with CASK)

Cray Trilinos

(with CASK)

Dense

Sparse

FFT

Compilers

3rd party

compiler

GNU

Cray

Compiling

Environment

(CCE)

Environment setup

Modules

March 2016 Cray Inc. Proprietary © 2016
5

C O M P U T E | S T O R E | A N A L Y Z E
6

The Cray Compiling Environment

● Cray technology focused on scientific applications
● Takes advantage of automatic vectorization
● Takes advantage of automatic shared memory parallelization

● Automatic optimizations for Cray architectures to deliver performance of a new target through
simple recompile
● Hide system complexity

● PGAS languages (UPC & Fortran Coarrays) fully optimized and integrated into the compiler

● No preprocessor involved
● Target the network appropriately
● Full debugger support with Allinea’s DDT

● Focus on standards for application portability and investment protection

● Fortran 2008 standard compliant
● C++11 compliant (working on C++14)
● OpenMP 4.0 compliant (working on OpenMP 4.5)
● OpenACC 2.0
● UPC 1.3

C O M P U T E | S T O R E | A N A L Y Z E
7

The Cray Compiling Environment

● Cray technology focused on scientific applications
● Takes advantage of automatic vectorization
● Takes advantage of automatic shared memory parallelization

● Automatic optimizations for Cray architectures to deliver performance of a new target through
simple recompile
● Hide system complexity

● PGAS languages (UPC & Fortran Coarrays) fully optimized and integrated into the compiler

● No preprocessor involved
● Target the network appropriately
● Full debugger support with Allinea’s DDT

● Focus on standards for application portability and investment protection

● Fortran 2008 standard compliant
● C++11 compliant (working on C++14)
● OpenMP 4.0 compliant (working on OpenMP 4.5)
● OpenACC 2.0
● UPC 1.3

March 2016 Cray Inc. Proprietary © 2016
7

C O M P U T E | S T O R E | A N A L Y Z E
8

Cray MPI & Cray SHMEM

● MPI
● Implementation based on MPICH3 from ANL

● ANL does base MPI standard support, we add new functionality, improve performance
both on-node, and all ranges of scale including at very high scale

● Full MPI-3 support with the exception of
● MPI-2 Dynamic process management (MPI_Comm_spawn)

● MPI Forum active participant

● Participated in the MPICH ABI Consortium
● ANL MPICH, Intel MPI, IBM PE MPI and Cray MPI

● Cray SHMEM
● Fully optimized Cray SHMEM library supported

● Cray implementation close to the T3E model

● Cray XE & XC implementation on top of the Distributed Memory Applications API (DMAPP)

March 2016 Cray Inc. Proprietary © 2016
8

C O M P U T E | S T O R E | A N A L Y Z E
9

Cray Performance Analysis Tools

● From performance measurement to performance analysis

● Assist the user with application performance analysis and
optimization
● Help user identify important and meaningful information from potentially massive

data sets
● Help user identify problem areas instead of just reporting data
● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Automatic program instrumentation
● Automatic analysis

● Target scalability issues in all areas of tool development

March 2016 Cray Inc. Proprietary © 2016
9

C O M P U T E | S T O R E | A N A L Y Z E
10

Debugging on Cray Systems

● Systems with thousands of threads of execution need a new debugging paradigm

● Cray’s focus is to build tools around traditional debuggers with innovative techniques for
productivity and scalability

● Scalable Solutions based on MRNet from University of Wisconsin
● STAT - Stack Trace Analysis Tool

● Scalable generation of a single, merged, stack backtrace tree

● ATP - Abnormal Termination Processing

● Scalable analysis of a sick application, delivering a STAT tree and a minimal,
comprehensive, core file set.

● LGDB / CCDB
● Ability to see data from multiple processors in the same instance of lgdb

● without the need for multiple windows

● Comparative debugging

● A data-centric paradigm instead of the traditional control-centric paradigm

● Collaboration with University of Queensland

● Support for traditional debugging mechanism
● RogueWave TotalView and Allinea DDT

March 2016 Cray Inc. Proprietary © 2016
10

C O M P U T E | S T O R E | A N A L Y Z E
11

Cray Adaptive Scientific Libraries
● The goal of the Cray Scientific Libraries is to provide the Cray user maximum

performance with minimum effort

● Scientific Libraries today have three concentrations to increase productivity with
enhanced performance
● Standardization
● Autotuning
● Adaptive Libraries

● Cray adaptive model

● Runtime analysis allows best library/kernel to be used dynamically
● Extensive offline testing allows library to make decisions or remove the need for those decisions
● Decision depends on the system, on previous performance info, obtained previously, and

characteristics of calling problem

● What makes Cray libraries special:
● Node performance
● Network performance
● Highly adaptive software

March 2016 Cray Inc. Proprietary © 2016
11

C O M P U T E | S T O R E | A N A L Y Z E
12

The Cray Compiling Environment

CCE

Luiz DeRose

Sr. Principal Engineer

Programming Environments Director

Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
13

CCE Highlights

● Arguably the most complete vectorization capabilities in the industry
● Fully automatic loop vectorization without the need of directives and source code modification

● This includes automatic outer loop vectorization, which is unique in the industry

● Focus on real applications, instead of just benchmarks

● Compiler feedback with annotated listing of source code indicating important optimizations

● The Program Library (PL), an application wide repository

● Allows whole application analysis
● Allows exchange of information between tools and the compiler

● Automatic shared memory parallelization with whole program analysis

● Bit reproducibility while maintaining high performance is a key example; critical for our climate

modeling customers

● Fully integrated heterogeneous optimization capability

March 2016 Cray Inc. Proprietary © 2016
13

C O M P U T E | S T O R E | A N A L Y Z E
14

CCE flex_mp Support (Bit Reproducibility)

March 2016

● Background:
● Required by some applications
● Given a single executable for the application, demonstrate identical floating point results while:

● Using the same data set
● Changing the number of MPI ranks
● Changing the number of OpenMP threads

● The Cray approach directly addresses the sources of divergence

● CCE does NOT perform extended precision arithmetic hoping conversion truncates divergence

● CCE provides the –hflex_mp option for controlling floating point and complex consistency

issues related to multiprocessing
● -hfp is for floating point and complex consistency issues within a single thread
● The performance impact depends mostly on how much the performance depends on vectorization of

floating point addition and multiplication

● -hflex_mp=intolerant is the option most certain to provide bit reproducibility, although it also

has the highest impact on performance

● -hflex_mp=conservative has comparatively little impact on performance, but is not strict
enough for some applications’

Cray Inc. Proprietary © 2016
14

C O M P U T E | S T O R E | A N A L Y Z E
15

Some Cray Compilation Environment Basics

March 2016

● CCE-specific features:
● Optimization: -O2 is the default and you should usually use this

● OpenACC is supported by default if GPU targeting module (craype-

accel-nvidia*) is loaded

● CCE only gives minimal information to stderr when compiling
● To see more information, you should request a compiler listing file

● flags -ra for ftn or -hlist=a for cc
● writes a file with extension .lst
● contains annotated source listing, followed by explanatory messages

● Each message is tagged with an identifier, e.g.: ftn-6430
● to get more information on this, type: explain <identifier>

● Cray Reveal can display all this information (and more)

Cray Inc. Proprietary © 2016
15

C O M P U T E | S T O R E | A N A L Y Z E
16

Recommended CCE Compilation Options

March 2016

● Use default optimization levels
● It’s the equivalent of most other compilers –O3 or –fast
● It is also our most thoroughly tested configuration

● Using –O3,fp3 (or –O3 –hfp3, or some variation)

● -O3 only gives you slightly more than –O2
● We also test this thoroughly
● -hfp3 gives you a lot more floating point optimization, esp. 32-bit
● Do not use –Oipa5, -Oaggress, and so on

● higher numbers are not always correlated with better performance

● Optimizing OpenACC
● Try –hacc_model=fast_addr

● This uses 32-bit integers in all addressing to improve GPU performance
● In rare cases may result in incorrect code

● Optimizing for compile time rather than execution time
● Compile time can sometimes be improved by disabling certain features/optimizations

● Some common things to try: -hnodwarf, -hipa0, -hunroll0

Cray Inc. Proprietary © 2016
16

C O M P U T E | S T O R E | A N A L Y Z E
17

OpenMP

March 2016

● OpenMP is ON by default
● Optimizations controlled by –hthread#

● Autothreading is NOT on by default;

● -hautothread to turn on
● Modernized version of Cray X1 streaming capability
● Interacts with OpenMP directives

● If you do not want to use OpenMP and have OMP

directives in the code, make sure to shut off OpenMP at
compile time
● To shut off use –hthread0 or –xomp or –hnoomp

Cray Inc. Proprietary © 2016

17

C O M P U T E | S T O R E | A N A L Y Z E
18

Production Quality

March 2016

● Functional regression testing done nightly
● Roughly 35,000 nightly regression tests run for Fortran (14,000), C (7,000), and

C++ (14,000)
● Default optimization, but for multiple targets (X86, X86+AVX+FMA, X2,

X86+NVIDIA), plus “debug” and “production” compiler versions
● Additionally, cycle through “options testing” with the same test base

● Fortran: -G0, -G1, -G2, -O0, -Oipa0, -Oipa5 -hpic, “-O3,fp3” –e0
● C and C++: -Gn, -O0, -hipa0, -hipa5, -hpic, “-O3 –hfp3” -hzero
● Additional tests and suites have been added for GPU testing
● And some “stress test” option sets to create worse-case scenarios for the compiler
● Other combinations as necessary and by request

● Performance regression testing done weekly using important

applications and benchmarks

● Automated tools quickly isolate a test change to a specific compiler or
library mod.

Cray Inc. Proprietary © 2016
18

C O M P U T E | S T O R E | A N A L Y Z E
19

Loopmark: Compiler Feedback

● Compiler can generate an filename.lst file.
● Contains annotated listing of your source code with letter indicating

important optimizations

%%% L o o p m a r k L e g e n d %%%

Primary Loop Type Modifiers

------- ---- ---- ---------

 a - vector atomic memory operation

A - Pattern matched b – blocked

C - Collapsed f – fused

D - Deleted i – interchanged

E - Cloned m - streamed but not partitioned

I - Inlined p - conditional, partial and/or computed

M - Multithreaded r – unrolled

P - Parallel/Tasked s – shortloop

V - Vectorized t - array syntax temp used

W - Unwound w - unwound

March 2016 Cray Inc. Proprietary © 2016
19

C O M P U T E | S T O R E | A N A L Y Z E
20

Example: Cray loopmark Messages

● ftn –rm … or cc –hlist=m …

29. b-------< do i3=2,n3-1

30. b b-----< do i2=2,n2-1

31. b b Vr--< do i1=1,n1

32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)

33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)

34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)

35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)

36. b b Vr--> enddo

37. b b Vr--< do i1=2,n1-1

38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)

39. b b Vr * - a(0) * u(i1,i2,i3)

40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))

41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))

42. b b Vr--> enddo

43. b b-----> enddo

44. b-------> enddo

March 2016 Cray Inc. Proprietary © 2016
20

C O M P U T E | S T O R E | A N A L Y Z E
21

Example: Cray loopmark messages (cont)

 ftn-6289 ftn: VECTOR File = resid.f, Line = 29

 A loop starting at line 29 was not vectorized because a recurrence was found on "U1" between lines

32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 29

 A loop starting at line 29 was blocked with block size 4.

ftn-6289 ftn: VECTOR File = resid.f, Line = 30

 A loop starting at line 30 was not vectorized because a recurrence was found on "U1" between lines

32 and 38.

ftn-6049 ftn: SCALAR File = resid.f, Line = 30

 A loop starting at line 30 was blocked with block size 4.

ftn-6005 ftn: SCALAR File = resid.f, Line = 31

 A loop starting at line 31 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 31

 A loop starting at line 31 was vectorized.

ftn-6005 ftn: SCALAR File = resid.f, Line = 37

 A loop starting at line 37 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 37

 A loop starting at line 37 was vectorized.

March 2016 Cray Inc. Proprietary © 2016
21

C O M P U T E | S T O R E | A N A L Y Z E
22

Example of Explain Utility

users/ldr> explain ftn-6289

VECTOR: A loop starting at line %s was not vectorized because a recurrence

was found on "var" between lines num and num.

Scalar code was generated for the loop because it contains a linear

recurrence. The following loop would cause this message to be issued:

 DO I = 2,100

 B(I) = A(I-1)

 A(I) = B(I)

 ENDDO

March 2016 Cray Inc. Proprietary © 2016
22

C O M P U T E | S T O R E | A N A L Y Z E
23

CCE 8.4 Highlights

March 2016 Cray Inc. Proprietary © 2016
23

● Support for the C++11 language standard
● To enable C++11 features, use the -h std=c++11 command line option

● Support for the OpenMP 4.0 specification

● Support for the inline assembly ASM construct for x86

processor targets

● Support for GNU extensions by default (-h gnu option)

● Fortran option to initialize floating point arrays to NaNs

C O M P U T E | S T O R E | A N A L Y Z E
24

Portable and Productive

Performance on Hybrid Systems

Luiz DeRose
Sr. Principal Engineer

Programming Environments Director
Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
25

Cray’s Vision for Accelerated Computing

March 2016 Cray Inc. Proprietary © 2016
25

● Most important hurdle for widespread adoption of accelerated computing
in HPC is programming difficulty
● Need a single programming model that is portable across machine types

● Portable expression of heterogeneity and multi-level parallelism

● Programming model and optimization should not be significantly difference for “accelerated”
nodes and multi-core x86 processors

● Allow users to maintain a single code base

● Cray’s approach to Accelerator Programming is to provide an ease of use
tightly coupled high level programming environment with compilers,
libraries, and tools that can hide the complexity of the system

● Ease of use is possible with
● Compiler making it feasible for users to write applications in Fortran, C, and C++
● Tools to help users port and optimize for hybrid systems
● Auto-tuned scientific libraries

C O M P U T E | S T O R E | A N A L Y Z E
26

Programming for a Node with Accelerator

● Fortran, C, and C++ compilers
● OpenMP 4.0 Device directives to drive compiler optimization

● Compiler does the “heavy lifting” to split off the work destined for the accelerator and perform the
necessary data transfers

● Compiler optimizations to take advantage of accelerator and multi-core X86 hardware
appropriately

● Advanced users can mix CUDA functions with compiler-generated accelerator
code

● Debugger support with DDT, TotalView, or Cray CCDB

● Cray Reveal, built upon an internal compiler database containing a
representation of the application
● Source code browsing tool that provides interface between the user, the compiler, and

the performance analysis tool
● Scoping tool to help users port and optimize applications
● Performance measurement and analysis information for identification of main loops of the code

to focus refactoring

● Scientific Libraries support
● Auto-tuned libraries (using Cray Auto-Tuning Framework)

C O M P U T E | S T O R E | A N A L Y Z E
27

Accelerator Programming

March 2016 Cray Inc. Proprietary © 2016
27

● Why do we need a new GPU programming model?

● Aren’t there enough ways to drive a GPU already?
● CUDA (incl. NVIDIA CUDA-C & PGI CUDA-Fortran)
● OpenCL

● All are quite low-level and closely coupled to the GPU

● User needs to rewrite kernels in specialist language:
● Hard to write and debug
● Hard to optimise for specific GPU
● Hard to port to new accelerator

● Multiple versions of kernels in codebase
● Hard to add new functionality

C O M P U T E | S T O R E | A N A L Y Z E
28

● Directives provide high-level
approach
● Simple programming model for

hybrid systems
● Easier to maintain/port/extend

code
● Non-executable statements

(comments, pragmas)
● The same source code can be

compiled for multicore CPU

● Possible performance sacrifice
● A small performance gap is

acceptable (do you still hand-code in
assembly?)

● Cray goal is to provide at least 80% of
the performance obtained with hand
coded CUDA

Accelerator Programming with Directives

Positives Trade-offs

C O M P U T E | S T O R E | A N A L Y Z E
29

Motivating Example: Reduction

● Sum elements of an array

● Original Fortran code

● 2.0 GFlops

!$acc data present(a,b)

a = 0.0

!$acc update device(a)

!$acc parallel

!$acc loop reduction(+:a)

do i = 1,n

 a = a + b(i)

end do

!$acc end parallel

!$acc end data

March 2016 Cray Inc. Proprietary © 2016
29

C O M P U T E | S T O R E | A N A L Y Z E
30

The Reduction Code in Simple CUDA

dim3 dimBlock(128, 1, 1);

dim3 dimGrid(2048, 1, 1);

dim3 small_dimGrid(16, 1, 1);

int smemSize = 128 * sizeof(int);

int *buffer_d, *red_d, *small_buffer_d;

cudaMalloc((void **) &buffer_d , sizeof(int)*2048);

cudaMalloc((void **) &small_buffer_d , sizeof(int)*16);

cudaMalloc((void **) &red_d , sizeof(int));

reduce0<<< dimGrid, dimBlock, smemSize >>>

(b_d, buffer_d);

reduce0<<< small_dimGrid, dimBlock, smemSize >>>

(buffer_d, small_buffer_d);

reduce0<<< 1, 16, smemSize >>>(small_buffer_d, red_d);

cudaMemcpy(&red, red_d, sizeof(int),

 cudaMemcpyDeviceToHost);

*a = red;

cudaFree(buffer_d);

cudaFree(small_buffer_d);

cudaFree(b_d);

}

__global__ void reduce0(int *g_idata, int *g_odata)

{

extern __shared__ int sdata[];

unsigned int tid = threadIdx.x;

unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];

__syncthreads();

for(unsigned int s=1; s < blockDim.x; s *= 2) {

if ((tid % (2*s)) == 0) {

sdata[tid] += sdata[tid + s];

}

__syncthreads();

}

if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

extern "C" void reduce0_cuda_(int *n, int *a, int *b)

{

int *b_d,red;

const int b_size = *n;

cudaMalloc((void **) &b_d , sizeof(int)*b_size);

cudaMemcpy(b_d, b, sizeof(int)*b_size,

cudaMemcpyHostToDevice);

1.74 GFlops

March 2016 Cray Inc. Proprietary © 2016
30

C O M P U T E | S T O R E | A N A L Y Z E
31

The Reduction Code in Optimized CUDA

 if (tid < 32) {

 volatile T* smem = sdata;

 if (blockSize >= 64) { smem[tid] = mySum = mySum + smem[tid + 32]; }

 if (blockSize >= 32) { smem[tid] = mySum = mySum + smem[tid + 16]; }

 if (blockSize >= 16) { smem[tid] = mySum = mySum + smem[tid + 8]; }

 if (blockSize >= 8) { smem[tid] = mySum = mySum + smem[tid + 4]; }

 if (blockSize >= 4) { smem[tid] = mySum = mySum + smem[tid + 2]; }

 if (blockSize >= 2) { smem[tid] = mySum = mySum + smem[tid + 1]; }

 }

 if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

extern "C" void reduce6_cuda_(int *n, int *a, int *b) {

 int *b_d;

 const int b_size = *n;

 cudaMalloc((void **) &b_d , sizeof(int)*b_size);

 cudaMemcpy(b_d, b, sizeof(int)*b_size, cudaMemcpyHostToDevice);

 dim3 dimBlock(128, 1, 1), dimGrid(128, 1, 1), small_dimGrid(1, 1, 1);

 int smemSize = 128 * sizeof(int);

 int *buffer_d;

 int small_buffer[4],*small_buffer_d;

 cudaMalloc((void **) &buffer_d , sizeof(int)*128);

 cudaMalloc((void **) &small_buffer_d , sizeof(int));

 reduce6<int,128,false><<< dimGrid, dimBlock, smemSize >>>(b_d,buffer_d, b_size);

 reduce6<int,128,false><<<small_dimGrid,dimBlock, smemSize>>>(buffer_d,small_buffer_d,128);

 cudaMemcpy(small_buffer, small_buffer_d, sizeof(int), cudaMemcpyDeviceToHost);

 *a = *small_buffer;

 cudaFree(buffer_d);

 cudaFree(small_buffer_d);

 cudaFree(b_d);

}

template<class T>

struct SharedMemory {

 __device__ inline operator T*() {

 extern __shared__ int __smem[]; return (T*)__smem;

 }

 __device__ inline operator const T*() const {

 extern __shared__ int __smem[]; return (T*)__smem;

 }

};

template <class T, unsigned int blockSize, bool nIsPow2>

__global__ void reduce6(T *g_idata, T *g_odata, unsigned int n) {

 T *sdata = SharedMemory<T>();

 unsigned int tid = threadIdx.x;

 unsigned int i = blockIdx.x*blockSize*2 + threadIdx.x;

 unsigned int gridSize = blockSize*2*gridDim.x;

 T mySum = 0;

 while (i < n) {

 mySum += g_idata[i];

 if (nIsPow2 || i + blockSize < n)

 mySum += g_idata[i+blockSize];

 i += gridSize;

 }

sdata[tid] = mySum;

 __syncthreads();

 if (blockSize >= 512) { if (tid < 256) { sdata[tid] = mySum = mySum

+ sdata[tid + 256]; } __syncthreads(); }

 if (blockSize >= 256) { if (tid < 128) { sdata[tid] = mySum = mySum

+ sdata[tid + 128]; } __syncthreads(); }

 if (blockSize >= 128) { if (tid < 64) { sdata[tid] = mySum = mySum

+ sdata[tid + 64]; } __syncthreads(); }

10.5 GFlops

March 2016 Cray Inc. Proprietary © 2016
31

C O M P U T E | S T O R E | A N A L Y Z E
32

The reduction code in OpenACC

● Compiler does the work:
● Identifies parallel loops within

the region

● Splits the code into accelerator
and host portions

● Workshares loops running on
accelerator
● Uses MIMD and SIMD

parallelism

● Data movement
● allocates/frees GPU memory at

start/end of region

● moves data to/from GPU

March 2016 Cray Inc. Proprietary © 2016

32

!$acc data present(a,b)

a = 0.0

!$acc update device(a)

!$acc parallel

!$acc loop reduction(+:a)

do i = 1,n

 a = a + b(i)

end do

!$acc end parallel

!$acc end data

8.32 GFlops

C O M P U T E | S T O R E | A N A L Y Z E
33

The reduction code in OpenMP 4.0

● Compiler does the work:
● Identifies parallel loops within

the region

● Splits the code into accelerator
and host portions

● Workshares loops running on
accelerator
● Uses MIMD and SIMD

parallelism

● Data movement
● allocates/frees GPU memory at

start/end of region

● moves data to/from GPU

March 2016 Cray Inc. Proprietary © 2016

33

! Assume outer data region has

! placed a,b on accelerator

a = 0.0

!$omp target update to(a)

!$omp target teams distribute &

!$omp reduction(+:a)

do i = 1,n

 a = a + b(i)

end do

!$omp end target teams distribute

C O M P U T E | S T O R E | A N A L Y Z E
34

OpenMP (and OpenACC) Execution Model

March 2016 Cray Inc. Proprietary © 2016
34

● In short: It's just like CUDA

● Host-directed execution with attached accelerator(s)

● Main program executes on “host” (i.e. CPU)
● Compute intensive regions offloaded to the accelerator device

● Under control of the host

● “device” (i.e. GPU) executes parallel regions
● Typically contain “kernels” (i.e. work-sharing loops)

● Host must orchestrate the execution by:
● Allocating memory on the accelerator device,

● Initiating data transfer,

● Sending the code to the accelerator,

● Passing arguments to the parallel region,

● Queuing the device code,

● Waiting for completion,

● Transferring results back to the host, and

● Deallocating memory

● Host can usually queue a sequence of operations
● To be executed on the device, one after the other

C O M P U T E | S T O R E | A N A L Y Z E
35

OpenMP (and OpenACC) device Memory Model

March 2016 Cray Inc. Proprietary © 2016
35

● In short: it's just like CUDA

● Memory spaces on the host and device distinct (usually)
● Different locations, different address space

● Data movement performed by host using runtime library calls that explicitly move data between the separate
spaces

● GPUs have a weak memory model
● There is no automatic synchronization between different execution units (SMs)

● Unless explicit memory barrier

● One can write device kernels with race conditions
● Giving inconsistent execution results

● Compiler will catch most errors, but not all (no user-managed barriers)

● OpenMP device constructs
● Data movement between the memories implicit

● Managed by the compiler,

● Based on directives from the programmer.

● Device memory caches are managed by the compiler
● With hints from the programmer in the form of directives

C O M P U T E | S T O R E | A N A L Y Z E
36

A First OpenACC Program

 Two accelerator parallel regions
 Compiler creates two kernels

 Loop iterations automatically divided across
gangs, workers, vectors

 Breaking parallel region acts as barrier

 First kernel initializes array
 Compiler will determine copyout(a)

 Second kernel updates array
 Compiler will determine copy(a)

 Breaking parallel region=barrier
 No barrier directive (global or within SM)

 Code still compile-able for CPU

 Array a(:) unnecessarily moved from and to GPU between kernels ("data sloshing“)

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
!$acc end data
 <stuff>
END PROGRAM main

March 2016 Cray Inc. Proprietary © 2016
36

C O M P U T E | S T O R E | A N A L Y Z E
37

A Second Version

 Now added a data region
 Specified arrays only moved at

boundaries of data region
 Unspecified arrays moved by each

kernel
 No compiler-determined

movements for data regions
 Data region can contain host code

and accelerator regions
 Copies of arrays independent

 No automatic synchronization of copies within data region

 User-directed synchronization via update directive

 Code still compile-able for CPU

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
!$acc end data
 <stuff>
END PROGRAM main

March 2016 Cray Inc. Proprietary © 2016
37

C O M P U T E | S T O R E | A N A L Y Z E
38

Data Clauses

March 2016 Cray Inc. Proprietary © 2016
38

● Applied to: data, parallel [loop], kernels [loop]
● copy, copyin, copyout

● Copy moves data "in" to GPU at start of region and/or "out" to CPU at end
● Supply list of arrays or array sections (using ":" notation)
● Fortran uses start:end; C/C++ uses start:length

● e.g. first N elements: Fortran 1:N (familiar); C/C++ 0:N (less familiar)

● Advice: be careful and don't make mistakes!

● Use profiler and/or runtime commentary to see how much data moved

● Avoid non-contiguous array slices for performance

● create

● No copyin/out – useful for shared temporary arrays in loop nests

● private, firstprivate: as per OpenMP

● scalars private by default (not just loop variables)
● Advice: declare them anyway, for clarity

C O M P U T E | S T O R E | A N A L Y Z E
39

More Data Clauses

● present, present_or_copy*, present_or_create
● pcopy*, pcreate for short

● Checks if data is already on the device
● if it is, it uses that version

● no data copying will be carried out for that data

● if not, it does the prescribed data copying

● The data is processed on the GPU

March 2016 Cray Inc. Proprietary © 2016
39

C O M P U T E | S T O R E | A N A L Y Z E
40

Sharing GPU Data Between Subprograms

 One of the kernels now in subroutine (maybe in separate file)
 Compiler supports function calls inside parallel regions

 Compiler will automatically inline*

 The present clause uses version of b on GPU without data copy
 Can also call double_array() from outside a data region

 Replace present with present_or_copy (can be shortened to pcopy)

 Original calltree structure of program can be preserved

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
 CALL double_array(a)
!$acc end data
 <stuff>
END PROGRAM main

INTEGER FUNCTION double_scalar(c)
 INTEGER :: c
 double_scalar = 2*c
END FUNCTION double_scalar

SUBROUTINE double_array(b)
 INTEGER :: b(N)
!$acc parallel loop present_or_copy (b)
 DO i = 1,N
 b(i) = double_scalar(b(i))
 ENDDO
!$acc end parallel loop
END SUBROUTINE double_array

March 2016 Cray Inc. Proprietary © 2016
40

C O M P U T E | S T O R E | A N A L Y Z E
41

● host_data region exposes accelerator memory address on host
● nested inside data region

● Call CUDA-C wrapper (compiled with nvcc; linked with CCE)
● Must include cudaThreadSynchronize()

● Before: so asynchronous accelerator kernels definitely finished
● After: so CUDA kernel definitely finished

● CUDA kernel written as usual
● Or use same mechanism to call existing CUDA library

CUDA Interoperability

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
! <Populate a(:) on device
! as before>
!$acc host_data use_device(a)
 CALL dbl_cuda(a)
!$acc end host_data
!$acc end data
 <stuff>
END PROGRAM main

__global__ void dbl_knl(int *c) {
 int i = \
 blockIdx.x*blockDim.x+threadIdx.x;
 if (i < N) c[i] *= 2;
}

extern "C" void dbl_cuda_(int *b_d) {
 cudaThreadSynchronize();
 dbl_knl<<<NBLOCKS,BSIZE>>>(b_d);
 cudaThreadSynchronize();
}

March 2016 Cray Inc. Proprietary © 2016
41

C O M P U T E | S T O R E | A N A L Y Z E
42

Clauses for !$acc parallel loop

March 2016 Cray Inc. Proprietary © 2016
42

● Tuning clauses:
● User can tune default behavior with optional directives and clauses

● Optimize GPU occupancy, register and shared memory usage, loop
scheduling...

● Loop schedule: spreading loop iterations over PEs of GPU
● Compiler takes care of cases where iterations doesn’t divide threadblock size

● !$acc loop [gang] [worker] [vector]
● Targets specific loop (or loops with collapse) at specific level of

hardware
● You can specify more than one

● !$acc loop gang worker vector schedules loop iteration over all hardware

 Parallelism NVIDIA GPU SMT node (CPU)

 gang: a threadblock CPU

 worker: warp (32 threads) CPU core

 vector: SIMT group of threads SIMD instructions (SSE, AVX)

C O M P U T E | S T O R E | A N A L Y Z E
43

parallel vs. kernels

March 2016 Cray Inc. Proprietary © 2016
43

● parallel and kernels regions look very similar
● both define a region to be accelerated

● different heritage; different levels of obligation for the compiler
● parallel

● prescriptive (like OpenMP programming model)
● uses a single accelerator kernel to accelerate region
● compiler will accelerate region (even if this leads to incorrect results)

● kernels
● descriptive
● uses one or more accelerator kernels to accelerate region
● compiler may accelerate region (if decides loop iterations are independent)

● For more info: http://www.pgroup.com/lit/articles/insider/v4n2a1.htm

● Which to use (our opinion)
● parallel (or parallel loop) offers greater control

● fits better with the OpenMP model
● kernels (or kernels loop) better for initially exploring parallelism

● not knowing if loopnest is accelerated could be a problem

http://www.pgroup.com/lit/articles/insider/v4n2a1.htm
http://www.pgroup.com/lit/articles/insider/v4n2a1.htm

C O M P U T E | S T O R E | A N A L Y Z E
44

parallel loop vs. parallel and loop

March 2016 Cray Inc. Proprietary © 2016
44

● parallel region can span multiple code blocks
● i.e. sections of serial code statements and/or loopnests

● loopnests in parallel region are not automatically partitioned

● need to explicitly use loop directive for this to happen

● scalar code (serial code, loopnests without loop directive)
● executed redundantly, i.e. identically by every thread

● or maybe just by one thread per block (its implementation dependent)

● There is no synchronization between redundant code or kernels

● offers potential for overlap of execution on GPU
● also offers potential (and likelihood) of race conditions and incorrect code

● There is no mechanism for a barrier inside a parallel region
● after all, CUDA offers no barrier on GPU across threadblocks
● to effect a barrier, end the parallel region and start a new one

● also use wait directive outside parallel region for extra safety

C O M P U T E | S T O R E | A N A L Y Z E
45

parallel loop vs. parallel and loop

March 2016 Cray Inc. Proprietary © 2016
45

● My advice: don't...
● GPU threads are very lightweight (unlike OpenMP)

● so don't worry about having extra parallel regions

● explicit use of async clause may achieve same results
● as using one parallel region
● but with greater code clarity and better control over overlap

● ... but if you feel you must
● begin with composite parallel loop and get correct code

● separate directives with care only as a later performance tuning
● when you are sure the kernels are independent and no race conditions

● this is similar to using OpenMP on the CPU
● if you have multiple do/for directives inside omp parallel region
● only introduce nowait clause when you are sure the code is working
● and watch out for race conditions

C O M P U T E | S T O R E | A N A L Y Z E
46

Parallel Gotchas
● No loop directive

● The code will (or may) run redundantly

● Every thread does every loop iteration

● Not usually what we want

!$acc parallel
 DO i = 1,N
 a(i) = b(i) + c(i)
 ENDDO
!$acc end parallel

● Serial code in parallel region
● avoids copyin(t), but a good idea?

● No! Every thread sets t=0

● asynchronicity: no guarantee this finishes before
loop kernel starts

● race condition, unstable answers

!$acc parallel
 t = 0
!$acc loop reduction(+:t)
 DO i = 1,N
 t = t + a(i)
 ENDDO
!$acc end parallel

● Multiple kernels
● Again, potential race condition

● Treat OpenACC "end loop" like OpenMP
"enddo nowait"

!$acc parallel
!$acc loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc loop
 DO i = 1,N
 a(i) = a(i) + 1
 ENDDO
!$acc end parallel

March 2016 Cray Inc. Proprietary © 2016
46

C O M P U T E | S T O R E | A N A L Y Z E
47

Sources of further information

March 2016 Cray Inc. Proprietary © 2016
47

● OpenACC standard web page:
● OpenACC.org

● documents: full standard and quick reference guide PDFs
● links to other documents, tutorials etc.

● Discussion lists:

● Cray users: openacc-users@cray.com
● automatic subscription if you have a raven account

● OpenACC forum: openacc.org/forum

● CCE man pages (with PrgEnv-cray loaded):

● programming model and Cray extensions: intro_openacc
● examples of use: openacc.examples
● also compiler-specific man pages: crayftn, craycc, crayCC

● CrayPAT man pages (with perftools loaded):
● intro_craypat, pat_build, pat_report

● also command: pat_help
● accpc (for accelerator performance counters)

http://www.openacc.org/
mailto:openacc-users@cray.com
mailto:openacc-users@cray.com
mailto:openacc-users@cray.com
http://openacc.org/forum

C O M P U T E | S T O R E | A N A L Y Z E
48

OpenMP 4.0 main features

March 2016 Cray Inc. Proprietary © 2016
48

● Target constructs for accelerator support
● OpenACC like functionality

● Goal was to match OpenACC functionality, though there are some differences

● SIMD
● Vectorization capability

● Affinity
● Control of thread mapping

● Portable support for –cc options

● Cancellation
● Early exit from an OpenMP construct (search loop)

● Task groups and dependencies
● Better control of task ordering and grouping

● User Defined Reductions
● User created reduction folds (for example min/max with index)

C O M P U T E | S T O R E | A N A L Y Z E
49

omp target

March 2016 Cray Inc. Proprietary © 2016
49

● omp target causes the region to run on the accelerator with a logical single thread
● the OpenACC equivalent to this is a top-level "acc parallel" region with "num_gangs(1)“

● omp teams can only appear in "omp target" (with no statements in between)

● this is a fork-join parallelism construct, launching a "league of teams", but the teams are "loosely
coupled"
● the teams are not allowed to synchronize or make any assumptions about ordering of teams or progress

of teams relative to one another

● this is equivalent to the "gang" level in OpenACC

● omp distribute is a loop worksharing construct that causes the "teams" (from an
"omp teams" construct) to each execute a partition of the loop iterations
● since "teams" are loosely coupled, there is no implied barrier across teams at the end of this loop

● This is equivalent to "acc loop gang”

C O M P U T E | S T O R E | A N A L Y Z E
50

omp target data

March 2016 Cray Inc. Proprietary © 2016
50

● A block-structured construct that defines a scope for creating device
copies of host variables; the encountering thread remains executing
on the host; this is equivalent to "acc data"

● map: a clause used on "target data" and "target" regions to specify
which variables should be transferred to the device; this clause
supports several "map types":
● alloc (equivalent to OpenACC "pcreate");
● to (equivalent to OpenACC "pcopyin");
● from (equivalent to OpenACC "pcopyout");
● tofrom (equivalent to OpenACC "pcopy").
● OpenMP only defines the "present_or" semantics

● OpenACC 2.5 is adopting this same behavior

● OpenMP does not provide an equivalent OpenACC "present" clause
● OpenMP 4.5 does

C O M P U T E | S T O R E | A N A L Y Z E
51

OpenACC

● !$acc parallel

● !$acc loop gang

● !$acc loop worker

● !$acc loop vector

● !$acc loop gang vector

● !$acc kernels

● !$omp target teams

● !$omp distribute

● !$omp parallel do/for

● !$omp simd

● !$omp distribute simd

● Not supported

OpenACC to OpenMP - Compute Constructs

OpenMP

March 2016 Cray Inc. Proprietary © 2016

C O M P U T E | S T O R E | A N A L Y Z E
52

OpenACC

● !$acc data
● create/pcreate
● copyin/pcopyin
● copy/pcopy
● copyout/pcopyout
● present(<list>)

● !$acc update self

● !$acc update device

● !$acc enter/exit data

● !$acc host_data

● !$omp target data
● map(alloc:)
● map(to:)
● map(tofrom:)
● map(from:)
● map(<list>) (4.5)

● !$omp target update from

● !$omp target update to

● !$omp enter/exit target data (4.5)

● !$omp target data (4.5)

● map(always:[to:|from:|tofrom:] <list>) (4.5)

OpenACC to OpenMP - Data regions

OpenMP

March 2016 Cray Inc. Proprietary © 2016

C O M P U T E | S T O R E | A N A L Y Z E
53

OpenACC

● !$acc declare create

● !$acc declare
device_resident

● !$acc declare link

● !$acc routine
● !$acc routine(<name>)

● !$omp declare target

● Not supported

● !$omp declare target link (4.5)

● !$omp declare target

● !$omp declare target(<name>)

OpenACC to OpenMP - Separate Compilation

OpenMP

March 2016 Cray Inc. Proprietary © 2016

C O M P U T E | S T O R E | A N A L Y Z E
54

OpenACC

● API routines

● Atomics

● !$acc cache

● Async/Wait

● Most supported in 4.5

● Use regular OpenMP
atomics

● Not supported

● Tasks in 4.0
● Depend/nowait on target in

4.5

OpenACC to OpenMP - Other

OpenMP

March 2016 Cray Inc. Proprietary © 2016

C O M P U T E | S T O R E | A N A L Y Z E
55

A First OpenMP Device Program

March 2016 Cray Inc. Proprietary © 2016

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$omp target data ma)
!$omp target
!$omp teams
!$omp distribute
 DO i = 1,N
 a(i) = i
 ENDDO
!$omp end distribute
!$omp end teams
!$omp end target
!$omp target
!$omp teams
!$omp distribute
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$omp end distribute
!$omp end teams
!$omp end target
!$omp end target data
 <stuff>
END PROGRAM main

● First loop nest initializes array

● Second loop nest modifies array

● Each loop nest is target region

● Compiler turns region into kernel

● teams creates threads
● divided into a "league of teams"

● like CUDA "grid of threadblocks"

● distribute partitions loop
● iterations divided over threads

● Breaking target region gives barrier
● Only way to get global sync

C O M P U T E | S T O R E | A N A L Y Z E
56

A First Program

 Data movements
 Automatically scoped

 First kernel initializes array a(:)
 Compiler chooses map(from:a)

 Second kernel modifies array a(:)
 Compiler chooses map(tofrom:a)

 Note:

 composite directives are shorter
 target teams distribute

 data sloshing of a(:)
 moved to/from GPU between kernels

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$omp target data map(from:a)

!$omp target teams distribute
 DO i = 1,N
 a(i) = i
 ENDDO
!$omp end target teams distribute

!$omp target teams distribute
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$omp end target teams distribute

!$omp end target data
 <stuff>
END PROGRAM main

March 2016 Cray Inc. Proprietary © 2016
56

C O M P U T E | S T O R E | A N A L Y Z E
57

A Second Version

 Now add a target data region
 to reduce data sloshing

 Specified arrays only move at boundaries
of data region

 Unspecified arrays still moved by each
kernel

 No automatic scoping for data regions

 Data regions are the single biggest
optimization in an offload code
 Should be introduced at highest

level in code possible

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$omp target data map(from:a)

!$omp target teams distribute
 DO i = 1,N
 a(i) = i
 ENDDO
!$omp end target teams distribute

!$omp target teams distribute
DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$omp end target teams distribute

!$omp end target data
 <stuff>
END PROGRAM main

March 2016 Cray Inc. Proprietary © 2016
57

C O M P U T E | S T O R E | A N A L Y Z E
58

A Second Version

 target data regions
 contain target region(s) and

(optionally) host code
 can be nested

 Two copies of arrays inside region
 One on host
 One on accelerator

 Copies of arrays independent
 No automatic synchronization of

copies within data region
 Only at the boundaries

 target update directive
 user-directed synchronization within

target data region

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$omp target data map(from:a)

!$omp target teams distribute
 DO i = 1,N
 a(i) = i
 ENDDO
!$omp end target teams distribute

!$omp target teams distribute
DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$omp end target teams distribute

!$omp end target data
 <stuff>
END PROGRAM main

March 2016 Cray Inc. Proprietary © 2016
58

C O M P U T E | S T O R E | A N A L Y Z E
59

Data Movement Clauses

● Applied to: target data, target

● map(<maptype>:<array>)
● to, from, tofrom

● Moves data "to" GPU at start of region and/or "from" GPU at end
● Supply list of arrays or array sections (using ":" notation)
● Fortran uses start:end; C/C++ uses start:length

● e.g. first N elements: Fortran 1:N (familiar); C/C++ 0:N (less familiar)
● Advice: be careful and don't make mistakes!
● Use profiler and/or runtime commentary to see how much data moved
● Avoid non-contiguous array slices for performance

● alloc
● No copying, useful for shared temporary arrays in loop nests

● private, firstprivate: as in host OpenMP
● scalars (including loop variables) shared by default

● Advice: declare them anyway, for clarity

March 2016 Cray Inc. Proprietary © 2016
59

C O M P U T E | S T O R E | A N A L Y Z E
60

Sharing GPU Data Between Subprograms

 One of the kernels now in subroutine (maybe in separate file)
 Compiler supports function calls inside target regions

 Array b(:) will be scoped as map(tofrom:b) [automatically or explicitly]
 Compiler will always first check if the array is already on GPU
 If so, will use that version and not copy the data

 Original calltree structure of program can be preserved

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$omp target data map(from:a)
!$omp target teams distribute
 DO i = 1,N
 a(i) = i
 ENDDO
!$omp end target teams distribute
 CALL double_array(a)
!$omp end target data
 <stuff>
END PROGRAM main

INTEGER FUNCTION double_scalar(c)
 INTEGER :: c
 double_scalar = 2*c
END FUNCTION double_scalar

SUBROUTINE double_array(b)
 INTEGER :: b(N)
!$omp target teams distribute
 DO i = 1,N
 b(i) = double_scalar(b(i))
 ENDDO
!$omp end target teams distribute
END SUBROUTINE double_array

March 2016 Cray Inc. Proprietary © 2016
60

C O M P U T E | S T O R E | A N A L Y Z E
61

● use_device_ptr region exposes accelerator memory address
● on inner target data region (nested inside outer target data region)

● CUDA-C wrapper compiled with nvcc linked with CCE)
● Must include cudaThreadSynchronize() before and after

● Before: so asynchronous accelerator kernels definitely finished
● After: so CUDA kernel definitely finished

● CUDA kernel written as usual
● Can use same method to call existing CUDA library or G2G-enabled MPI

CUDA Interoperability (OpenMP4.5)

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$omp target data map(from:a)
! <Populate a(:) on device
! as before>
!$omp target data use_device_ptr(a)
 CALL dbl_cuda(a)
!$omp end target data
!$omp end target data
 <stuff>
END PROGRAM main

__global__ void dbl_knl(int *c) {
 int i = \
 blockIdx.x*blockDim.x+threadIdx.x;
 if (i < N) c[i] *= 2;
}

extern "C" void dbl_cuda_(int *b_d) {
 cudaThreadSynchronize();
 dbl_knl<<<NBLOCKS,BSIZE>>>(b_d);
 cudaThreadSynchronize();
}

March 2016 Cray Inc. Proprietary © 2016
61

C O M P U T E | S T O R E | A N A L Y Z E
62

Clauses for !$omp target teams distribute

March 2016 Cray Inc. Proprietary © 2016
62

● Tuning clauses:
● User can tune default behavior with optional directives and clauses
● Loop schedule: spreading loop iterations over accelerator threads

● Compiler takes care when # iterations doesn’t divide threadblock size

● num_teams, thread_limit:
● Control the number of threadblocks, threads per block (CCE default: 128)
● Only need num_teams for tuning

● collapse: Apply tuning to multiple loops
● dist_schedule: Control mapping of loop iterations to threads
● nowait, depend: Create asynchronous tree (DAG) of tasks

● Other clauses:

● if: runtime decision to execute loopnest on host or device
● reduction: specify reduction variables (as in traditional OpenMP)

C O M P U T E | S T O R E | A N A L Y Z E
63

More OpenMP device directives

March 2016 Cray Inc. Proprietary © 2016
63

● Performance tuning
● !$omp simd

● Choose which loop (or loops with collapse) to vectorize in loop nest

● Data synchronisation

● !$omp target update [to|from]
● Copy specified arrays (slices) within target data region

● Useful if you only need to send a small subset of data to/from accelerator
● e.g. halo exchange for domain-decomposed parallel code
● or sending a few array elements to the CPU for printing/debugging

● Remember slicing syntax differs between Fortran and C/C++
● The array sections should be contiguous
● Can also use nowait, depend tuning clauses for asynchronous DAG

● !$omp declare target

● Makes a variable resident in accelerator memory
● persists for the duration of the implicit data region

● Also used to execute subprogram on the accelerator (avoiding inlining)

C O M P U T E | S T O R E | A N A L Y Z E
64

Directives: composite or separate?

March 2016 Cray Inc. Proprietary © 2016
64

● !$omp target teams distribute or separate directives
● Separate directives allow larger target regions

● Spanning several loop nests
● But with a huge potential for race conditions

● Composite is always the best starting point

● GPU threads are very lightweight (unlike host OpenMP)
● so don't worry about having extra teams regions

● explicit use of nowait clause may achieve same results
● as using one large target region
● but with greater code clarity and better control over overlap

● ... but if you feel you must
● begin with composite version and get correct code

● separate directives with care only as a later performance tuning
● when you are sure the kernels are independent and no race conditions

C O M P U T E | S T O R E | A N A L Y Z E
65

Sources of further information

March 2016 Cray Inc. Proprietary © 2016
65

● OpenMP standard web page:
● OpenMP.org

● documents: full standard and quick reference guide PDFs
● links to other documents, tutorials etc.

● Discussion lists:

● OpenMP forum: openmp.org/forum

● CCE man pages (with PrgEnv-cray loaded):
● compiler-specific man pages: crayftn, craycc, crayCC

● CrayPAT man pages (with module perftools-base loaded):

● intro_craypat, pat_build, pat_report
● also command: pat_help

● accpc (for accelerator performance counters)

http://www.openmp.org/
http://openmp.org/forum/

C O M P U T E | S T O R E | A N A L Y Z E
66

CCDB Overview
● What is comparative debugging?

● Data centric approach instead of the traditional control-centric paradigm
● Two applications, same data
● Key idea: The data should match
● Quickly isolate deviating variables

● Comparative debugging tool

● NOT a traditional debugger!
● Assists with comparative debugging
● CCDB GUI hides the complexity and helps automate process

● Creates automatic comparisons

● Based on symbol name and type

● Allows user to create own comparisons

● Error and warning epsilon tolerance

● Scalable

● How does this help me?
● Algorithm re-writes
● Language ports
● Different libraries/compilers
● New architectures

● Collaboration with University of Queensland

SC’15 – L. DeRose et al. “Relative Debugging

for a Highly Parallel Hybrid Computer System”

C O M P U T E | S T O R E | A N A L Y Z E
67

Comparative Debugging

● Specify conditions for correct
behavior prior to execution

● Debugger:
● keeps track of comparison points

(breakpoints)

● performs comparison automatically

● Control returned to user:
● examination of state

● continuation of execution

assert P1::T1[0..99]@”file.c”:240 = P2::Y2(1,100)@”prog.f”:300

C O M P U T E | S T O R E | A N A L Y Z E
68

CCDB - Comparison

C O M P U T E | S T O R E | A N A L Y Z E
69

Introduction to the Cray Accelerated

Scientific Libraries

Luiz DeRose
Sr. Principal Engineer

Programming Environments Director
Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E
70

Cray Adaptive Scientific Libraries

March 2016 Cray Inc. Proprietary © 2016
70

● The Cray Scientific Libraries have three concentrations to
increase productivity with enhanced performance
● Standardization

● Autotuning

● Adaptive Libraries

● Cray adaptive model based on autotuning
● Runtime analysis allows best library/kernel to be used dynamically

● Extensive offline testing allows library to make decisions or remove
the need for those decisions

● Decision depends on the system, on previous performance info,
obtained previously, and characteristics of calling problem

C O M P U T E | S T O R E | A N A L Y Z E
71

What Makes Cray Libraries Special

● Cray scientific libraries are designed to give maximum possible
performance from Cray systems with minimum effort
● Node performance

● Highly tuned BLAS etc at the low-level

● Network performance
● Optimize for network performance
● Overlap between communication and computation
● Use the best available low-level mechanism
● Use adaptive parallel algorithms

● Highly adaptive software
● Using auto-tuning and adaptation, give the user the known best (or very good) codes at

runtime

● Productivity features
● Simpler interfaces into complex software

March 2016 Cray Inc. Proprietary © 2016
71

C O M P U T E | S T O R E | A N A L Y Z E
72

What is Cray Libsci_acc?

● Provide basic scientific libraries optimized for hybrid systems
● Incorporate the existing GPU libraries into Cray libsci

● Independent to, but fully compatible with OpenACC and OpenMP 4.0

● Multiple use case support

● Get the base use of accelerators with no code change
● Get extreme performance of GPU with or without code change

● Provide additional performance and usability

● Three interfaces

● Simple interface
● Auto-adaptation
● Base performance of GPU with minimal (or no) code change
● Target for anybody: non-GPU users and non-GPU expert

● Expert interfaces (Device and CPU)

● Advanced performance of the GPU with controls for data movement
● Target for CUDA, OpenACC, and GPU experts

● Does not imply the expert interfaces are always needed to get great performance

March 2016 Cray Inc. Proprietary © 2016
72

C O M P U T E | S T O R E | A N A L Y Z E
73

Why libsci_acc ?

March 2016 Cray Inc. Proprietary © 2016
73

● Several scientific library packages are already there
● CUBLAS,
● CUFFT,
● CUSPARSE (NVIDIA),
● MAGMA (U Tennessee),
● CULA (EM Photonics).

● Code modification is required to use these existing GPU libraries!
● No Compatibility to Legacy APIs

● cublasDgemm(….)
● magma_dgetrf(…)
● culaDgetrf(…)
● Why not dgemm(), dgetrf()?

● Not focused on Standard API (Fortran, C, C++)
● Require CUDA data types, primitives and functions in order to call them

● Performance

C O M P U T E | S T O R E | A N A L Y Z E
74

Usage – Basics

March 2016 Cray Inc. Proprietary © 2016
74

● Fortran and C interfaces (column-major assumed)

● Load the module craype-accel-nvidia35

● Compile as normal (dynamic libraries used)

● To enable threading in the CPU library, set OMP_NUM_THREADS

● e.g. export OMP_NUM_THREADS=16

● Assign 1 single MPI process per node

● Multiple processes cannot share the single GPU

● Execute your code as normal

C O M P U T E | S T O R E | A N A L Y Z E
75

Three interfaces for three use cases

March 2016 Cray Inc. Proprietary © 2016
75

● Simple interface

dgetrf(M, N, A, lda, ipiv, &info)

dgetrf(M, N, d_A, lda, ipiv, &info)

● Device interface

 dgetrf_acc(M, N, d_A, lda, ipiv, &info)

● CPU interface

 dgetrf_cpu(M, N, A, lda, ipiv, &info)

GPU

CPU

GPU + CPU

GPU

CPU

C O M P U T E | S T O R E | A N A L Y Z E
76

Adaptation in the Simple Interface

● You can pass either host pointers or device pointers with the
simple interface

● A is in host memory
● dgetrf(M, N, A, lda, ipiv, &info)
● Performs hybrid operation on GPU
● if problem is too small, performs host operation

● Pass Device memory

● dgetrf(M, N, d_A, lda, ipiv, &info)
● Performs hybrid operation on GPU

● BLAS 1 and 2 performs computation local to the data location

● CPU-GPU data transfer is too expensive to exploit hybrid execution

March 2016 Cray Inc. Proprietary © 2016
76

C O M P U T E | S T O R E | A N A L Y Z E
77

Libsci_acc: Simple Interface for BLAS3 and LAPACK

User

Application

Libsci_acc

DGEMM_ACC

dgemm_(); where is

the data?

On GPU

On Host

Libsci_acc

Hybrid DGEMM

Large

enough?

Libsci

DGEMM

CPU

yes

no

GPU

March 2016 Cray Inc. Proprietary © 2016
77

C O M P U T E | S T O R E | A N A L Y Z E
78

Device interface

March 2016 Cray Inc. Proprietary © 2016
78

● Device interface gives higher degrees of control

● Requires that you have already copied your data to the
device memory

● API
● Every routine in libsci has a version with _acc suffix

● E.g. dgetrf_acc

● This resembles standard API except for the suffix and the device
pointers

C O M P U T E | S T O R E | A N A L Y Z E
79

CPU interface

March 2016 Cray Inc. Proprietary © 2016
79

● Sometimes apps may want to force ops on the CPU
● Need to preserve GPU memory

● Want to perform something in parallel

● Don’t want to incur transfer cost for a small op

● Can force any operation to occur on CPU with _cpu
version

● Every routine has a _cpu entry-point

● API is exactly standard otherwise

C O M P U T E | S T O R E | A N A L Y Z E
80

libsci_acc interaction with OpenMP/OpenACC

Cray Inc. Proprietary © 2016
80

● If the rest of the code uses
OpenMP Device or
OpenACC, it’s possible to
use the library with
directives

● All data management
performed by OpenMP
Device or OpenACC

● Calls the device version of
dgemm

● All data is in CPU memory
before and after data
region

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm_acc('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

March 2016

C O M P U T E | S T O R E | A N A L Y Z E
81

libsci_acc interaction with OpenMP/OpenACC

Cray Inc. Proprietary © 2016
81

● libsci_acc is a bit
smarter that this

● Since ‘a,’ ‘b’, and ‘c’
are device arrays, the
library knows it
should run on the
device

● So just dgemm is
sufficient

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm ('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

March 2016

C O M P U T E | S T O R E | A N A L Y Z E
82

Thank You

Questions

