
framework that is maximally efficient for large sets of parameters 
to be evaluated against a fixed set of candidate structures. This 
computational problem is related, but distinct, from the evalua-
tion typically needed for molecular dynamics calculations where 
a single parameter set is evaluated against a very large number 
of structures. The computational engine will be used to take ad-
vantage of genetic algorithms for parameter optimization, Monte 
Carlo evaluation of Bayesian estimates of uncertainty, and cyclic 
improvement of databases, but other optimization schemes (such 
as Pareto optimization) could be considered as well.

WHY BLUE WATERS
The computational engine is designed specifically to leverage 

massively parallel architecture with a worker–manager structure; 
access to Blue Waters has been instrumental for the implemen-
tation and testing of the code as well as preliminary runs. This 
work would have been impossible otherwise.
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EXECUTIVE SUMMARY 
Empirical potentials are “course-grained” models of atomic in-

teractions and are fundamental to materials modeling. They al-
low molecular dynamics simulations of processes involving 106–
109 atoms and timescales of nano- to microseconds or longer, and 
are necessary for both length- and time-bridging methods that 
span orders of magnitude in scale. Their optimization to repro-
duce computationally demanding quantum mechanics-based sim-
ulation methods is a significantly challenging problem. 

Recently, the researchers developed a new approach that re-
lies on a combination of Bayesian sampling of potential param-
eters [1] with the optimization of the fitting database [2]. The 
team’s algorithm optimizes the target structures and properties, 
as well as their “weight,” to guide the optimization of a poten-
tial to make accurate predictions [3]. This automated approach 
can work both for predictions where experimental or theoreti-
cal guidance is missing by including related structures and also 
to determine when an empirical potential form may be too lim-
ited to capture the predictions of interest.

RESEARCH CHALLENGE
The algorithm to optimize a coarse-grained empirical poten-

tial (Fig. 1) has recently been demonstrated in the team’s publi-
cations. Recently, they achieved the next step to reach increased 
complexity and, hence, significantly greater impact across ma-
terials science, physics, chemistry, and biology: improved paral-
lelization of the algorithm to reach large scale. The algorithm re-
lies on Bayesian sampling of parameter space to determine opti-
mal parameters along with error estimates for predictions from 
the model. The parameters are optimized against a “fitting da-
tabase”: a selection of structures with density functional theo-
ry (DFT) energies and force, and with relative weights capturing 
the importance of each entry. The database is optimized by us-
ing a genetic algorithm over the weights. At the center of this al-
gorithm is their massively parallel evaluation engine that takes a 
list of structures (atomic positions and chemistries) and a large 
vector of parameters θ (the spline values) for the empirical po-
tential, and evaluates the energies and forces for each parameter. 
As the researchers include more structures—through prediction 
of new structures using both DFT and the empirical parameter 
optimization—and more parameters, the need for a massively 
parallel approach becomes apparent. For example, if the team 
were to consider 106 empirical potential parameters applied to 

103 structures with 103 evaluations (energy, forces, and deriva-
tives of predictions with respect to parameters), although each 
individual calculation requires less than a second to complete, 
there are approximately 109 calculations providing about 8 tera-
bytes of data to be used simultaneously; the complete calcula-
tion requires ~103 cores for memory. Increasing the number of 
structures by one order of magnitude and the number of param-
eters by two orders of magnitude increases the scale to approx-
imately 106 cores with about 8 petabytes of data. These calcula-
tions are embarrassingly parallel and are utilized within a mas-
ter–worker approach, but the large amount of simultaneous data 
is spread across workers. By moving to these larger scales, the 
structural and energy landscape of an empirical potential can be 
fully analyzed for accurate and predictive empirical potentials. 
This transforms the problem of coarse-grained parameter opti-
mization into a “Big Data” problem that is of the scale appropri-
ate for a machine like Blue Waters, and provides for a big impact.

METHODS & CODES
This project uses the research team’s newly developed paral-

lel evaluation engine, implemented in Python. The code contin-
ues to be in active development and is available through Github 
(https://github.com/TrinkleGroup/s-meam). The underlying par-
allel algorithm is worker–manager, where individual workers are 
tasked with evaluating forces or energies for a specific structure; 
sets of parameters can be passed to a given worker and the forc-
es or energies sent back to the manager. At the beginning of a 
run, each worker analyzes its structure to convert the spline cal-
culations into vector-matrix operations for efficient evaluation. 
This helps to keep each worker’s evaluation for one parameter 
set efficient but also permits even faster evaluation of sets of pa-
rameters through vectorized operations. The code uses NumPy 
and SciPy along with Message-Passing Interface for communica-
tion. Current runs of up to 512 cores have shown that the calcu-
lations—using a genetic algorithm for optimization—have been 
compute-bound rather than I/O-bound. All development of the 
algorithm has been on Blue Waters.

RESULTS & IMPACT
Generating a highly efficient and massively parallel materi-

als modeling optimization engine will enable new approaches to 
the development of empirical potentials that leverage machines 
at Blue Waters’ scale. The research team is designing a general 

Figure 1: The parallel Bayesian optimization for coarse-graining complex interactions and directed knowledge discovery cuts across materials science, statistics, physics, 
and chemistry. While the research team’s first application of this method is for the modeling of materials at atomistic length scales—a general problem—the approach 
for predictive coarse-graining will be useful for other applications. The iterative optimization cycle produces a dual representation of the coarse-grained information and 
an accurate, predictive model of material properties.
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