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EXECUTIVE SUMMARY
The Large Hadron Collider (LHC) at CERN, in Switzerland, 

is the world’s most powerful particle accelerator. The LHC rec-
reates the conditions of the Universe one tenth of a nanosec-
ond after the Big Bang by colliding together protons traveling at 
0.99999997 times the speed of light 40 million times every sec-
ond. Each proton–proton collision creates up to several hundred 
particles that pass through one of four detectors situated at the 
LHC interaction points. 

Reconstructing the collisions requires identifying these parti-
cles using their signatures in the detector. Recent advances in ma-
chine learning and artificial intelligence, known as deep learning, 
have made it possible to apply learning networks to many kinds 
of problems. In particular, identifying particles from their ener-
gy deposition in calorimeter cells bears a strong resemblance to 
problems in machine vision, in which objects are reconstructed 
from intensity values in pixel arrays. The research team has ex-
ploited deep learning techniques to identify and measure parti-
cles produced at colliders and have found that they provide im-
provements in performance with respect to conventional methods.

RESEARCH CHALLENGE
The LHC recreates the conditions of the Universe a tenth of 

a second after the Big Bang by colliding together high-energy 
protons. In 2012, the Higgs boson was discovered in LHC data, 
completing the Standard Model of particle physics and leading 
to the Nobel Prize in Physics in 2013. This discovery transformed 
our understanding of the building blocks of matter and the fun-
damental forces by explaining the origin of the masses of sub-
atomic particles. 

However, the Standard Model is not capable of resolving key 
open questions and thus cannot be the final theory of nature. 
In particular, it cannot explain the origin of dark matter, which 
comprises about five times as much total mass in the Universe as 
visible matter but whose nature is not understood. Various be-
yond-the-standard-model scenarios, including supersymmetry 
and extra dimensions of spacetime, have been posited to resolve 
these problems. These scenarios generically predict the existence 
of exotic new particles, which may be produced at LHC. Search-
ing for these particles to understand the nature of physics beyond 

Figure 1: Signal vs. background efficiency receiver operating characteristic (ROC) curves for (left) photon vs. neutral pion and (right) electron vs. charged pion discrimination, 
using a boosted decision tree and a cell-based or feature-based deep neural network.

the Standard Model is now the highest priority of the LHC phys-
ics program and the focus of this project. 

Analyzing LHC data to search for physics beyond the Standard 
Model requires identifying and measuring the particles produced 
in proton–proton collisions. Particles produced in collisions tra-
verse detectors, depositing their energy in calorimeters consist-
ing of a granular array of detecting elements (pixels). The result-
ing image can be analyzed to distinguish among the six species 
of stable particles (electrons, photons, charged hadrons, neutral 
hadrons, and muons) and infer their energies. Electrons and pho-
tons are expected signatures of a wide variety of interesting new 
physics scenarios but may be mimicked by charged and neutral 
hadrons, which are produced at rates that are higher by several 
orders of magnitude. Since each collision contains typically thou-
sands of particles, discriminating signals from electrons and pho-
tons from hadronic backgrounds is complicated by the presence 
of additional overlapping particles. Identifying and measuring 
electrons and photons, especially those with low energy, is thus 
a major challenge of high-energy physics. 

METHODS & CODES
Recent advances in machine learning and artificial intelligence, 

known as deep learning, have made it possible to apply learning 
networks to many kinds of problems. These techniques are driven 
by the emergence of large data sets, powerful graphical processing 
unit (GPU) processors, and new techniques to train billion-neu-
tron multilayer artificial neural networks (NN). In computer vi-
sion, deeply connected neural networks (DNN) and convolutional 
neural networks (CNN) have provided dramatic improvements in 
performance and speed with respect to conventional algorithms 
and require minimal engineering.

The research team employed DNNs and CNNs to distinguish 
among signals from electrons and photons and hadronic back-
grounds and measure particle energies. The team simulated sam-
ples of individual electron, photon, charged hadron, and neutral 
hadron images in a simple high-granularity calorimeter detector 
implemented with the Geant4 simulation toolkit. These images 
were used to train NNs, using PyTorch, that distinguish between 
electrons vs. charged hadrons and photons vs. neutral hadrons and 
to measure the energies of the four particle species. To optimize 
the network architectures, the scientists varied the NN hyper-
parameters, including the number of NN layers (depth), number 
of neurons per layer (width), and the learning and dropout rates.

RESULTS & IMPACT
The research team evaluated the performance of DNNs and 

CNNs trained on particle images and compared the results to the 
current state-of-the-art algorithms widely used in particle phys-
ics. These algorithms employ NNs and boosted decision trees 
(BDTs) to analyze a precomputed set of particle features such as 
the calorimeter shower depth and width. For both classification 
and energy measurement using regression, the team found that 
the deep NNs provided significant improvements compared to 

the conventional methods. These results serve as a first step to-
ward implementing deep learning for particle identification and 
measurement at the LHC. 

WHY BLUE WATERS
Optimizing the network performance using hyperparameter 

scans requires retraining NNs hundreds or thousands of times, 
which is especially challenging for memory-intensive networks 
such as GoogLeNet or ResNet. The 4,228 GPU-enabled XK nodes 
with 25 TB of GPU accelerator memory available on Blue Wa-
ters enable training and optimization of neural networks beyond 
what has previously been achieved, allowing for detailed inves-
tigations of their behavior for both particle physics and gener-
al applications. 
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Figure 2: The relative energy resolution of four types of particles vs. the true particle 
energy for a (dashed line) simple linear fit to the total calorimeter energies vs. a 
(solid line) convolutional neural network.
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