
techniques incur the cost of multiple stages per transfer and 
require synchronization across workers during aggregation. With 
Caramel, we showed that the decentralized aggregation patterns 
such as the bucket algorithm and HD can work well in DNN 
applications when coupled with model optimizations that enable 
better synchronization among workers.

To understand the opportunity for network acceleration 
through model-aware optimization, we investigated dataflow 
models associated with 16 DNNs and identified common model 
characteristics that enable efficient network transfers. We found 
that the same model can result in network transfers activated (i.e., 
parameters being ready for aggregation) in different orders across 
multiple workers. This can prove detrimental to decentralized 
aggregation where all workers should activate the same parameter 
before the transfer is initiated. To solve this problem, we enforced 
ordering in network transfers by adding additional dependencies 
in the DAG to force all workers to activate network transfers in 
the same order.

All DNNs we analyzed have a large number of small parameters 
that incur significant overhead during network transfer. To tackle 
the small-parameter overhead, we implemented model-aware 
batching in Caramel, while ensuring that the batched parameters 
were ready at nearly the same time to avoid waiting. In addition, we 
identified the opportunity for increasing the window of network 
transfer during an iteration of DNN training without delaying the 
training. An iteration has two phases: forward pass and backward 
pass. Currently, transfers are restricted to the backward pass. 
We proposed techniques for extending network transfers to 
the forward pass in Caramel, thereby increasing the overlap of 
communication and computation.

We also implemented Caramel over TensorFlow and 
demonstrated that the iteration time can be reduced by up to 
3.8 times without changing DNN training functionally, with the 
communication time reduced by at least two times in all networks.

RESULTS & IMPACT
We analyzed a variety of DNN models on TensorFlow with the 

commonly used Parameter Server implementation, TensorFlow 
with Horovod [6], which relies on MPI all reduce implementation 
of the bucket algorithm and halving–doubling, and our method. 

We conducted our experiments on both the Blue Waters network 
as well as a public cloud (Azure) with commodity networks.

In Fig. 1, we observe that TensorFlow with Parameter Server 
offers high overlap. However, the communication cost of PS is 
very high. The Horovod implementation, on the other hand, 
reduces the communication cost with an efficient aggregation 
pattern. However, these decentralized patterns suffer from a poor 
overlap of communication and computation. As a result, PS with 
a higher communication cost achieves better GPU utilization in 
this instance. Ideally, we want to be in the bottom right region 
of this plot to achieve high utilization.

In Fig. 2, we report the iteration time and GPU utilization with 
16 workers for Caramel, PS with eight servers co-located with 
the workers, and Horovod for five representative networks. We 
observe that Caramel can improve the iteration time by up to 3.84 
times (in VGG-16) and GPU utilization by up to 2.46 times (in 
AlexNet-v2). We also find that performance gains are not equal 
across networks. The speedup is higher when communication 
time is much higher than computation time. In compute-intensive 
networks such as Inception-v3 and Resnet-v2-152, network 
optimization results in minimal improvement in iteration time 
and GPU utilization compared with PS.

WHY BLUE WATERS
Blue Waters’ excellent platform makes it easy to conduct large-

scale exploration to find potential performance opportunities. 
Furthermore, the vibrant community of Blue Waters users and 
staff helped us to get up to speed faster using past experiences 
on other systems.

PUBLICATIONS & DATA SETS 
Hashemi, S.H., S.A. Jyothi, and R. Campbell, On The Importance 

of Execution Ordering in Graph-Based Distributed Machine 
Learning Systems. SysML (2018).

Hashemi, S.H., S.A. Jyothi, and R. Campbell, Network Efficiency 
through Model-Awareness in Distributed Machine Learning 
Systems. USENIX NSDI (2018).

ACCELERATING DEEP NEURAL NETWORK TRAINING WITH 
MODEL-AWARE NETWORK SCHEDULING 
Allocation: Exploratory/40 Knh
PI: Roy H Campbell1

Co-PIs: Sayed Hadi Hashemi1, William Gropp1

1University of Illinois at Urbana-Champaign

EXECUTIVE SUMMARY 
Deep Neural Networks (DNNs) form the crux of advanced 

solutions in a variety of domains such as computer vision and 
natural language processing. The increasing complexity of these 
problem domains necessitates large-scale, distributed training 
of the associated DNNs. Today, performance and scalability 
of distributed DNN training are bottlenecked by iterative 
computations among nodes. In this work, we took a more in-
depth look at communications in DNN workloads. 
• We proposed a performance model for DNN workloads and 

used the model to explain the lesser-known performance 
bottlenecks in these workloads. 

• Our benchmark results showed that while high-performance 
networks such as Gemini substantially reduce the communication 
time, they may decrease overall performance by reducing the 
overlap compared to commodity networks.

• Lastly, we developed Caramel, a model-aware approach to 
take advantage of faster networks while achieving the highest 
performance.

RESEARCH CHALLENGE
In frameworks such as TensorFlow [1] or PyTorch, the 

computation and communication involved in training are 
represented using dataflow graphs, which are directed acyclic 
graphs (DAGs). The state of the DNN is represented by a vector of 
parameters. Each iteration involves the computation of parameter 
updates, followed by their exchange among the participating nodes. 

Currently, performance and scalability of distributed DNN 
training is bottlenecked by this parameter aggregation [2,3]. At 
a high level, there are two causes of these network inefficiencies 
during aggregation. First, the most commonly used pattern of 
parameter aggregation relies on a centralized server, Parameter 
Server (PS), and an all-to-one/one-to-all communication pattern, 
causing incast/outcast at the PS and limiting the goodput (sustained 
performance) of the system. Second, the scheduling of operations 
is such that training computation blocks on the network-intensive 
aggregation leaves GPUs idle. The increasing sizes of training 
data sets and DNN models and, therefore, increasing the number 
of machines involved in training, is likely to reduce the overall 
inefficiency.

In this work, our goal was to minimize network bottlenecks 
in distributed DNN training to reduce the iteration time and 
increase GPU utilization. Toward this goal, we designed and 
built Caramel. The intuition behind Caramel is that while some 
related incast/outcast problems may be found in data analytics 
and graph-processing systems, DNN training offers a particular 
opportunity for network optimization since it has a more 
predictable environment with fixed parameter sizes and nearly 
identical iterations. Caramel applies this idea by: (1) analyzing 
a variety of aggregation patterns and choosing the appropriate 
aggregation pattern for a given environment and model, which 
we refer to as “network-aware optimization”; and (2) leveraging 
an understanding of the operations within model training to 
improve communication/computation overlap, which we refer 
to as “model-aware optimization.”

METHODS & CODES
To achieve performance improvement through network-

aware optimization, we analyzed all-to-one and decentralized 
data aggregation techniques such as the bucket [4] and halving–
doubling (HD) [5] algorithms. The bucket algorithm and HD 
offer better network load distribution across workers compared 
with PS and naive all-to-all communication. However, these 

GA

ML

CI

BI

Figure 1: Overlap coefficient and communication/computation ratio for different 
communication methods with GPU utilization contours in the background (using 
Inception-v3 with eight workers). Our system (Caramel) versus TensorFlow Default 
(PS) versus TensorFlow and MPI (Horovod).

Figure 2: Performance comparison of our system (Caramel) versus TensorFlow Default (PS) versus TensorFlow and MPI (Horovod).

 2018BLUE WATERS ANNUAL REPORT

180 181


