Machine Learning on Blue Waters Using TensorFlow with the Image Feature Detection Problem

Or: How I Learned to Stop Worrying And Love AI

Presented By: Dr. Aaron D. Saxton
Today's Topics

• Blue Waters overview
• TensorFlow Basics
• Statistics Review
• Neural Networks
• Convolutions
• Convolutional Neural Networks
• ImageNet
• Blue Waters TensorFlow Process
• Distributed Tensor Flow
• TensorBoard
Blue Waters Overview

- Brief Summary
 - AMD Interlagos
 - NVIDIA Tesla
 - 22,636 XE Compute Nodes
 - 4,228 XK Compute Nodes
 - Cray Gemini Interconnect
Blue Waters Overview

2 XE nodes

2 XK nodes
Blue Waters Overview

Sonexion: 26 usable PB

>1 TB/sec

100 GB/sec

Spectra Logic: 200 usable PB

400+ Gb/sec WAN

Scuba Subsystem: Storage Configuration for User Best Access

13.34 PFLOPS

1.66 PB

External Servers

IB Switch

>1 TB/sec

100 GB/sec

10/40/100 Gb Ethernet Switch

External Servers

400+ Gb/sec WAN

Spectra Logic: 200 usable PB

Sonexion: 26 usable PB
TensorFlow Basics

- Python API
 - C++ under the hood
- Mediator Design Pattern
 - Uses python context manager (with)
- Workflow
 - Construct operations
 - Assign to name scope and or device
 - Enter Session context
 - run()
- www.tensorflow.org/programmers_guide/low_level_intro
TensorFlow Basics

Demo
Statistics Review

- Simple \(y = m \cdot x + b \) regression
 - Least Squares to find \(m, b \)
 - With data set \(\{(x_i, y_i)\}_{i=1}^{n} \)
 - Very special, often hard to measure \(y_i \)
 - Let the error be
 - \(R = \sum_{i=1}^{n} [(y_i - (m \cdot x_i + b)]^2 \)
 - Minimize \(Q \) with respect to \(m \) and \(b \).
 - Simultaneously Solve
 - \(R_m(m, b) = 0 \)
 - \(R_b(m, b) = 0 \)
 - Linear System
- We will consider more general \(y = f(x) \)
 - \(R_m(m, b) = 0 \) and \(R_b(m, b) = 0 \) may not be linear
Statistics Review

- Regressions with parameterized sets of functions. e.g.
 - \(y = ax^2 + bx + c \) (quadratic)
 - \(y = \sum a_i \ x^i \) (polynomial)
 - \(y = Ne^{rx} \) (exponential)
 - \(y = \frac{1}{1+e^{-(a+bx)}} \) (logistic)
- After optimal parameters found,
 - Use function for inference
 - Have \(x \), compute \(y \)
Neural Networks

- Activation functions
 - Logistic
 \[\sigma(x) = \frac{1}{1 + e^{-x}} \]
 - Arctan
 \[\sigma(x) = \arctan(x) \]
 - Softmax
 \[g_k(x_1, x_2, \ldots, x_N) = \frac{e^{x_k}}{\sum e^{x_i}} \]
Neural Networks

- Parameterized function
 - $Z_M = \sigma(\alpha_{0m} + \alpha_m X)$
 - $T_K = \beta_{0k} + \beta_k Z$
 - $f_K(X) = g_k(T)$

- $\beta_{0i}, \beta_i, \alpha_{0m}, \alpha_m$
 - Weights to be optimized
Neural Networks

- Finding Weights $\beta_0, \beta_i, \alpha_0, \alpha_m$
 - Back propagation
 - Nothing more than chain rule
 - Take partial derivative of error function R
 - This text is a good reference for nitty gritty details
 - The Elements of Statistical Learning, Second Edition, by Trevor Hastie, Robert Tibshirani, Jerome Friedman
 - Back propagation give errors (or loss)
 - Gradient Decent tells you how to update weights
Convolutions

- For two functions, $f(x), g(x)$
 - $(f * g)(x) = \int_{-\infty}^{\infty} f(y)g(x - y) \, dy$

- g is the kernel to f
- Above is a rolling average
Convolutional Neural Networks

- Highlights
 - AlexNet
 - VGG Net
 - GoogLeNet (Inception)
 - Microsoft ResNet
ImageNet

- www.image-net.org
- Large High Quality Dataset
 - 14,197,122 Images
 - 21841 synsets
- Runs the Large Scale Visual Recognition Challenge (ILSVRC)
- Annotated
 - Bounding Boxes
 - synset
 - WordNet (http://wordnet.princeton.edu)
ImageNet

- Blue Waters hosts copy of ImageNet
- Legal Term of Access
 - Create account on www.image-net.org
 - Navigate to Term of Access
 - Accept Term of Access
 - Take screen shot or print to PDF
 - Term of Access with your name on it.
 - Email to saxton@illinois.edu
- After I receive your Term of Access I will give your Blue Waters user read permission to data
ImageNet

Demo

(Archive Tour)
Blue Waters Tensorflow Process

- github.com/asaxton/ncsa-bluewaters-tensorflow
- Clone repo
- `cd ncsa-bluewaters-tensorflow/datasets/imagenet`
- `qsub extract_data_from_archive.pbs`
 - Wait for completion
- `qsub build_imagenet_data.pbs`
 - Wait for completion
- `cd ncsa-bluewaters-tensorflow/run_scripts`
- `qsub distributed_tf_launch.pbs`
 - Result will be in the directory checkpoint_dir
Blue Waters TensorFlow Process

Demo
(Code Tour)
Distributed TensorFlow

• Resources
 • www.tensorflow.org/deploy/distributed
 • www.oreilly.com/ideas/distributed-tensorflow
Distributed TensorFlow

Demo
(Code Tour)
TensorBoard

- Grab your checkpoint

Demo