
Tracking propagation in application variables highlights
dependencies between variables and processes. The application
HPCCG uses the conjugate gradient linear solver to solve the
sparse system of Ax=b. HPCCG is run 1,500 times with a single bit-
flip fault injected on process rank 3 during every run. Fig. 1 shows
the average percentage of elements deviated by more than 1e-10
(color) in the solution vector, x, for the application HPCCG across
all MPI processes (y-axis) for subsequent iterations after injection
(x-axis). As corruption in the solution vector propagates locally,
the horizontal color for that row grows darker. As corruption
is removed, the color lightens. Propagation between processes
can be seen by looking at the color progression of columns at
each iteration. Due to an MPI_Allreduce in the algorithm,
corruption is present on all processes within one iteration after
injection. However, the magnitude of the corruption is below our
threshold deviation tolerance of 1e-10 and does not appear in Fig.
1. As HPCCG continues to iterate, corruption propagates in all
processes. Over time, corruption is removed as HPCCG refines
the solution to Ax=b. The largest in magnitude and most difficult
to remove corruption remains on the process that experienced
the fault, rank 3.

Analyzing HPC applications and how they propagate corruption
is useful in determining what types of soft-error detectors to use
and where they are best placed. Furthermore, knowing which
variables are corrupted and on which processes corruption resides

when a soft error is detected enables low-cost localized recovery
instead of an expensive global rollback recovery, checkpoint-
restart. Going forward, as HPC design constraints increase the
likelihood of soft errors that can impact HPC application data,
efficient detection and recovery schemes are needed to ensure
applications obtain correct results.

WHY BLUE WATERS
The Blue Waters system allows us to perform fault injection

and track propagation in thousands of HPC application runs and
analyze the data generated more efficiently than other available
systems. The fast turnaround time in obtaining and analyzing
results greatly increased the speed and quality of this project.

PUBLICATIONS AND DATA SETS
Calhoun, J., M. Snir, L. Olson, and M. Garzaran, Understanding

the Propagation of Error Due to a Silent Data Corruption in a
Sparse Matrix Vector Multiply. Proceedings of the 2015 IEEE
International Conference on Cluster Computing, (IEEE Computer
Society, Chicago, Ill., September 8–11, 2015), pp. 541–542.

Calhoun, J., M. Snir, L. Olson, and W.D. Gropp, Towards a
More Complete Understanding of SDC Propagation. To appear
in Proceedings of the 26th International Conference on High
Performance and Distributed Computing, (ACM, Washington,
D.C., June 26–30, 2017).

ANALYZING THE PROPAGATION OF SOFT ERROR CORRUPTION
IN HPC APPLICATIONS
Jon Calhoun, University of Illinois at Urbana-Champaign
2016-2017 Graduate Fellow

EXECUTIVE SUMMARY
Because the rate of radiation-induced soft errors impacting

application data are expected to increase on future high-
performance computing (HPC) systems, analyzing how corruption
due to soft errors propagates inside applications becomes
critical for developing efficient detection and recovery schemes.
Quantifying the latency (the number of instructions or iterations)
of common symptoms of soft errors—e.g., crash or detection—
allows for measuring the effectiveness of soft error detectors at
containing corruption. Containing corruption allows for low-
cost localized recovery instead of the high-cost global roll-back
recovery checkpoint-restart. To analyze corruption propagation in
HPC applications, an LLVM-based compiler tool instruments an
application, allowing for tracking of corruption at an instruction
and application variable level. Results show that the latency of
common symptoms of soft errors along with speed of propagation
to other processes varies dramatically. Blue Waters provided us
with a platform to run thousands of fault-injection experiments
and analyze hundreds of gigabytes of data efficiently.

RESEARCH CHALLENGE
Design constraints, such as cost of procurement and power

budget, may make future HPC systems more susceptible to
transient radiation-induced soft errors [1]. Soft errors commonly
result in bit inversion and are the reason that all HPC main
memories uses protection mechanisms such as error-correcting
codes (ECC). On future systems, full protection from the effects of
soft errors will be prohibitively expense. Thus, HPC applications
running for long durations and at large scales may experience data

corruption during execution [2]. Furthermore, global rollback-
recovery becomes increasingly expensive at larger scales. Analyzing
the effectiveness of current software-based detection schemes
at containing data corruption is central in facilitating low-cost
localized recovery and ensuring correct simulation results.

METHODS & CODES
To track corruption propagation inside HPC applications, we

constructed an LLVM compiler pass to create an executable file
that emulates lockstep execution between a nonfaulty version of
the application called Gold and a version that experiences a single
bit-flip fault injection called Faulty. Gold produces a reference
set of loads, stores, and correct program behavior that Faulty is
judged against. The compiler pass completes the following steps
when instrumenting the code: (1) it duplicates compiled code,
forming two applications—Gold and Faulty, (2) it interleaves
instructions from Gold and Faulty, emulating lockstep execution,
(3) it instruments all loads and stores in Faulty with a function
call to log deviations, (4) it instruments Faulty branches to check
for control flow divergence, (5) it instruments faulty code for fault
injection with FlipIt [3], and (6) it logs deviation in application-level
variables at the end of iterations. This tool is used to investigate the
latency (in number of LLVM instructions executed) of common
symptoms of soft errors, the speed and extent of propagation
between variables and parallel processes, and the impact of local
problem size and compiler optimizations on propagation. The
applications we test include: Jacobi, CoMD, and HPCCG. The
latter two are taken from the Mantevo mini-app collection [4].
Each of these applications is modified with a lightweight soft-error
detection scheme to investigate the latency of soft-error detection.

RESULTS & IMPACT
This project tracks corruption propagation at both the

instruction level and the application variable level. Investigation
at the instruction level shows the latency (in number of LLVM
instructions) of common symptoms of soft errors: crash, control
flow divergence, and soft-error detection. Application crashes have
the shortest latency of the symptoms considered. Results show
that 90% of crashes occur within four instructions. During those
four instructions, there is little chance of corruption propagation.
The latency of control-flow divergence and soft-error detection
are noticeably larger. The larger latency allows for corruption
to propagate to other variables and processes. To measure the
extent and magnitude of corruption propagation in variables and
processes, we track propagation at the application variable level.Figure 1: Propagation of corruption (percentage of elements deviated by at least 1e-

10) in the solution variable of x of the application HPCCG.

GA

Jon Calhoun was a fifth-year Ph.D. student in computer science working under the direction of Luke N.
Olson and Marc Snir at the University of Illinois at Urbana-Champaign when this work was completed.
He graduated in August 2017.

	 2017BLUE WATERS ANNUAL REPORT

264 265

