
Tracking propagation in application variables highlights 
dependencies between variables and processes.  The application 
HPCCG uses the conjugate gradient linear solver to solve the 
sparse system of Ax=b. HPCCG is run 1,500 times with a single bit-
flip fault injected on process rank 3 during every run. Fig. 1 shows 
the average percentage of elements deviated by more than 1e-10 
(color) in the solution vector, x, for the application HPCCG across 
all MPI processes (y-axis) for subsequent iterations after injection 
(x-axis). As corruption in the solution vector propagates locally, 
the horizontal color for that row grows darker. As corruption 
is removed, the color lightens. Propagation between processes 
can be seen by looking at the color progression of columns at 
each iteration. Due to an MPI_Allreduce in the algorithm, 
corruption is present on all processes within one iteration after 
injection. However, the magnitude of the corruption is below our 
threshold deviation tolerance of 1e-10 and does not appear in Fig. 
1. As HPCCG continues to iterate, corruption propagates in all 
processes. Over time, corruption is removed as HPCCG refines 
the solution to Ax=b. The largest in magnitude and most difficult 
to remove corruption remains on the process that experienced 
the fault, rank 3.

Analyzing HPC applications and how they propagate corruption 
is useful in determining what types of soft-error detectors to use 
and where they are best placed. Furthermore, knowing which 
variables are corrupted and on which processes corruption resides 

when a soft error is detected enables low-cost localized recovery 
instead of an expensive global rollback recovery, checkpoint-
restart. Going forward, as HPC design constraints increase the 
likelihood of soft errors that can impact HPC application data, 
efficient detection and recovery schemes are needed to ensure 
applications obtain correct results. 

WHY BLUE WATERS
The Blue Waters system allows us to perform fault injection 

and track propagation in thousands of HPC application runs and 
analyze the data generated more efficiently than other available 
systems. The fast turnaround time in obtaining and analyzing 
results greatly increased the speed and quality of this project.
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EXECUTIVE SUMMARY 
Because the rate of radiation-induced soft errors impacting 

application data are expected to increase on future high-
performance computing (HPC) systems, analyzing how corruption 
due to soft errors propagates inside applications becomes 
critical for developing efficient detection and recovery schemes. 
Quantifying the latency (the number of instructions or iterations) 
of common symptoms of soft errors—e.g., crash or detection—
allows for measuring the effectiveness of soft error detectors at 
containing corruption. Containing corruption allows for low-
cost localized recovery instead of the high-cost global roll-back 
recovery checkpoint-restart. To analyze corruption propagation in 
HPC applications, an LLVM-based compiler tool instruments an 
application, allowing for tracking of corruption at an instruction 
and application variable level. Results show that the latency of 
common symptoms of soft errors along with speed of propagation 
to other processes varies dramatically. Blue Waters provided us 
with a platform to run thousands of fault-injection experiments 
and analyze hundreds of gigabytes of data efficiently.

RESEARCH CHALLENGE
Design constraints, such as cost of procurement and power 

budget, may make future HPC systems more susceptible to 
transient radiation-induced soft errors [1]. Soft errors commonly 
result in bit inversion and are the reason that all HPC main 
memories uses protection mechanisms such as error-correcting 
codes (ECC). On future systems, full protection from the effects of 
soft errors will be prohibitively expense. Thus, HPC applications 
running for long durations and at large scales may experience data 

corruption during execution [2]. Furthermore, global rollback-
recovery becomes increasingly expensive at larger scales. Analyzing 
the effectiveness of current software-based detection schemes 
at containing data corruption is central in facilitating low-cost 
localized recovery and ensuring correct simulation results.

METHODS & CODES
To track corruption propagation inside HPC applications, we 

constructed an LLVM compiler pass to create an executable file 
that emulates lockstep execution between a nonfaulty version of 
the application called Gold and a version that experiences a single 
bit-flip fault injection called Faulty. Gold produces a reference 
set of loads, stores, and correct program behavior that Faulty is 
judged against. The compiler pass completes the following steps 
when instrumenting the code: (1) it duplicates compiled code, 
forming two applications—Gold and Faulty, (2) it interleaves 
instructions from Gold and Faulty, emulating lockstep execution, 
(3) it instruments all loads and stores in Faulty with a function 
call to log deviations, (4) it instruments Faulty branches to check 
for control flow divergence, (5) it instruments faulty code for fault 
injection with FlipIt [3], and (6) it logs deviation in application-level 
variables at the end of iterations. This tool is used to investigate the 
latency (in number of LLVM instructions executed) of common 
symptoms of soft errors, the speed and extent of propagation 
between variables and parallel processes, and the impact of local 
problem size and compiler optimizations on propagation. The 
applications we test include: Jacobi, CoMD, and HPCCG. The 
latter two are taken from the Mantevo mini-app collection [4]. 
Each of these applications is modified with a lightweight soft-error 
detection scheme to investigate the latency of soft-error detection.

RESULTS & IMPACT
This project tracks corruption propagation at both the 

instruction level and the application variable level. Investigation 
at the instruction level shows the latency (in number of LLVM 
instructions) of common symptoms of soft errors: crash, control 
flow divergence, and soft-error detection. Application crashes have 
the shortest latency of the symptoms considered. Results show 
that 90% of crashes occur within four instructions. During those 
four instructions, there is little chance of corruption propagation. 
The latency of control-flow divergence and soft-error detection 
are noticeably larger. The larger latency allows for corruption 
to propagate to other variables and processes. To measure the 
extent and magnitude of corruption propagation in variables and 
processes, we track propagation at the application variable level.Figure 1: Propagation of corruption (percentage of elements deviated by at least 1e-

10) in the solution variable of x of the application HPCCG.
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