DIRECT NUMERICAL SIMULATION OF FULLY RESOLVED DROPLETS IN A TURBULENT FLOW

Allocation: NSF PRAC/2.35 Mnh
PI: Saeid Elghobashi
Collaborator: Michele Rosso

1University of California, Irvine

EXECUTIVE SUMMARY

The objective of our numerical study is to enhance the understanding of liquid droplet vaporization and mixing processes in a turbulent flow. The study employs direct numerical simulations (DNS) to examine the two-way interactions between freely-moving vaporizing droplets and isotropic turbulence. The droplets are fully resolved in 3D space and time (i.e., not treated as point particles), and all the scales of the turbulent motion are resolved down to the smallest relevant length- and time-scales (the Kolmogorov scales). Emphasis is placed on the two-way exchange of mass, momentum and energy between the vaporizing droplets and the surrounding turbulent gas. We simulated the motion of 1000 liquid droplets in isotropic turbulent flow to study their dispersion and compare it to the dispersion of solid particles. The goal is to understand the effect of the surface tension of the droplets on their dispersion.

METHODS & RESULTS

Our numerical procedure solves the discretized incompressible Navier-Stokes and continuity equations in the liquid and gas phases with appropriate jump conditions at the interface between the two phases. To implicitly capture the interface between the two phases, we employ the accurate conservative level set method. The numerical solution of the discretized equations uses the conjugate gradient method preconditioned by a V-cycle geometric multigrid (GMG) solver. To understand the effects of surface tension on the droplets' motion, we compared the dispersion characteristics of finite size liquid droplets and finite size solid particles in isotropic turbulence at moderate values of Reynolds numbers, in zero gravity. Furthermore, the interface between the liquid and gas phases must be resolved in time and space as the droplets move, including their shape change and possible droplet-droplet collision and merging. The Blue Waters staff is essential for the success of our study. Their continuous and prompt assistance is greatly appreciated.

WHY BLUE WATERS

Blue Waters is indispensable for the DNS of a droplet-laden turbulent flow since the carrier flow is time-dependent, three-dimensional and contains a wide spectrum of length- and timescales. Furthermore, the interface between the liquid and gas phases must be resolved in time and space as the droplets move, including their shape change and possible droplet-droplet collision and merging. The Blue Waters staff is essential for the success of our study. Their continuous and prompt assistance is greatly appreciated.

NEXT GENERATION WORK

Our next generation work will emphasize the two-way exchange of mass, momentum, and energy between the vaporizing droplets and the surrounding turbulent gas. We plan to study droplet-laden turbulent shear flows after understanding droplet-laden isotropic turbulence.

PUBLICATIONS AND DATA SETS