Three-dimensional nature of magnetic reconnection X-line in asymmetric current sheets

Yi-Hsin Liu @ NASA- Goddard Space Flight Center William Daughton @ Los Alamos National Lab Michael Hesse @ U. Bergen, Norway Ari Le @ Los Alamos National Lab

Three-dimensional nature of magnetic reconnection in plasmas

Yi-Hsin Liu @ NASA- Goddard Space Flight Center William Daughton @ Los Alamos National Lab Michael Hesse @ U. Bergen, Norway Ari Le @ Los Alamos National Lab

Key Challenge & Why it matters?

Plasmas

4th state of matter
> 99% of visible universe
Fusion device

Plasma Lamp

Lighting

Aurora Borealis

Solar Eruption

Nebula

- Interaction between lotsⁿ of charge particles + electromagnetic fields
 -- complicated & nonlinear!!
- Long range electromagnetic interaction!!
 - -- the evolution CANNOT be described by thermodynamics.

Introduction to magnetic reconnection -- Solar Eruption

(Observation of SDO mission) B~200 Gauss T~3,000,000 K

(Courtesy of NASA)

- Energy up to 10³² ergs is released in ~ 20 mins
 40 billion atomic bombs!
- Matter up to 10¹⁰ tons is erupted.

Magnetic Reconnection?

- 1. Inflow brings in magnetic flux
- 2. Field lines break & reconnect
- 3. Reconnected field line shoots out plasma
- 4. Pressure drop sucks in plasma inflow
- I. Inflow brings in magnetic flux
- 2.
- 3. ...

A self-driven process!!!

Earth's magnetosphere

- Reconnection occurs at both the magnetopause & magnetotail.
- Reconnection at the magnetotail drives magnetospheric substorm
 & causes aurora.
- Space Weather: a strong geomagnetic storm could do damage to satellites, astronauts, GPS system, power grids on Earth,....etc (e.g., 1859, 1989) Quebec blackout)

A billion \$ NASA mission designed to study magnetic reconnection

Magnetospheric Multiscale Mission (MMS)

http://mms.gsfc.nasa.gov

tight tetrahedron formation: separation down to 7 km! 100x faster for electrons measurement (30 ms) 30x faster for ions measurement (150 ms)

• MMS leads us into a stage where the 3D electron-scale structure of magnetic reconnection, in nature, can be measured in an unprecedented manner.

Why Blue Waters? & Our accomplishments to date

Particle-in-cell Simulations

Lorentz Force

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Maxwell Equation

$$\nabla \cdot \mathbf{B} = 0 \qquad \nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \cdot \mathbf{E} = 4\pi \rho \quad \nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

Pro: A first-principle description with rich kinetic physics being captured Con: It demands considerable computational resource ,especially for 3D systems (Challenge!)

Progress of Particle-in-Cell simulations

- Resource required for a typical run in our BW project:
 - ~2 trillion particles; ~ 6 billion cells;
 - ~12 million core-hours; ~ 260 K cores;
 - ~200 TB output (including restart files)

Q: What is the 3D nature of magnetic reconnection?? -- how it differs from the conventional 2D picture

An example 3D simulation

 $\begin{array}{c} \text{(current)} \\ \text{density)} \\ J/J_0 \end{array}$

Distinct 3D features, including

- flux ropes.
- kink instability.
- turbulence.

$$t\omega_{pe} = 382$$

(Previous BW results. Guo, Li, Daughton, Liu, PRL 2014 Guo, Liu, Daughton, Li, APJ 2015)

3D nature of reconnection X-line

Q:What determines the orientation of x-line??

Hypothesis: the system may tend to maximize

-- the magnetic energy conversion rate.?

-- the outflow speed.?

-- or ??

 Simulation on BW provides a first-principle test!

Result I: X-line Orientation

Result II: Extent and expansion of reconnection x-line in the magnetopause geometry

(3D view using ParaView)

Q: How does the x-line expand? what is the expanding speed?

--- Knowing the length of x-line is crucial for estimating the entry rate of solar wind plasmas into Earth's magnetosphere.

Result III: Extent and expansion of reconnection x-line in the magnetotail geometry

Q: Is there a limited x-line extent in the tail geometry?

-- Relevant to the formation of Bursty Bulk Flows (BBFs) often observed at Earth's magnetotail.

Result IV: Self-generated turbulence in Reconnection

Current density

- The reconnection current sheet & x-line can become turbulent in 3D!
 - -- the cause? the effect on the dissipation & energy conversion rate?

Broader Impact

Space Science

NASA's MMS mission

Astrophysics

Fermi Gamma Ray Space Telescope

Fusion device

e.g., ITER Tokamak @ France

Blue Waters Team Contributions

Special thanks to

Ryan Mokos for the help & advices on the data archiving.

JaeHyuk Kwack for the script that simultaneously launches tar comment in multiple cores!

Craig Steffen & storage group for fixing the error in my file system at Nearline.

Roberto Sisneros & visualization group for helping setup the 3D visualization using ParaView.

Summary

Magnetic Reconnection is the key process that releases the magnetic energy stored in space, astrophysical and laboratory plasma systems.

- -- The 3D nature of reconnection x-line remains unclear!
- -- Blue Waters provides the opportunity to explore this challenging problem.

The on-going science topics run on Blue Waters include:

- -- The orientation of 3D x-lines.
- -- The extent and expansion of 3D x-lines with local geometries similar to Earth's magnetopause & magnetotail.
- -- The turbulent nature of 3D x-lines.