

NEMO5 software team:

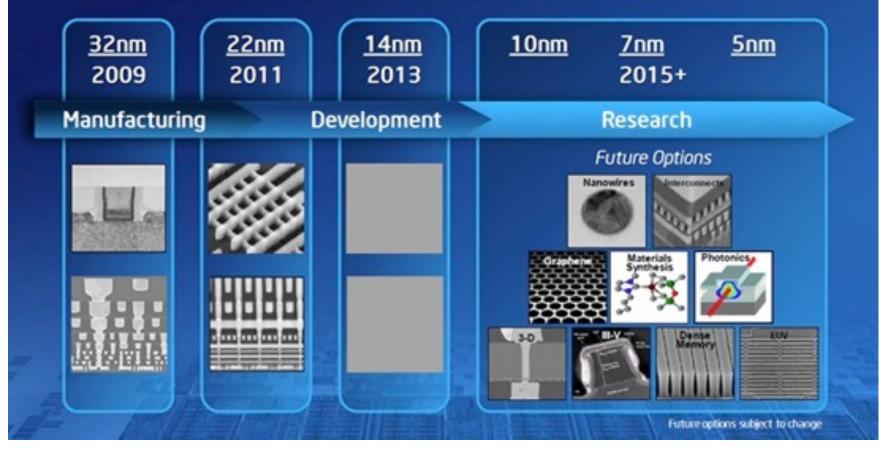
Students: Tarek Ameen, James Charles, ChinYi Chen, Fan Chen, Yuanchen Chu, Rifat Ferdous, Junzhe Geng, <u>Xinchen Guo</u>, Yuling Hsueh, Hesam Ilatikhameneh, Pengyu Long, Daniel Lemus, Kai Miao, Daniel Mejia, Samik Mukherjee, Harshad
 Sahasrabudhe, Prasad Sarangapani, Frederico Severgnini, Archana Tankasala, Daniel Valencia, KuangChung Wang, Yu Wang, Evan Wilson

PURDUE UNIVERSITY

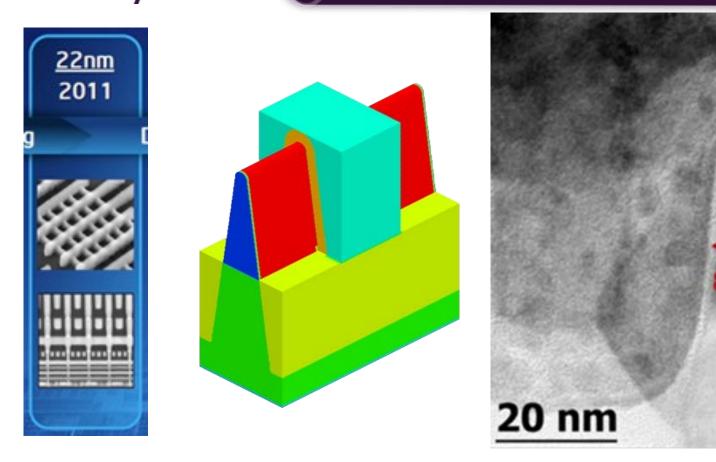
NEM@5

4 Professionals: Jun Huang, Tillmann Kubis, Bozidar Novakovic, Michael Povolotskyi Supervision: Gerhard Klimeck Network for Computational Nanotechnology (NCN) Electrical and Computer Engineering

- NEMO5 and nanoHUB
- Science on Blue Waters
 - » Electron-phonon scattering
 - » Multi-quantum well LEDs
 - » Compact model for copper grain boundaries
 - » Flying qubit modeling
- Summary



Innovation Enabled Technology Pipeline Our Visibility Continues to Go Out ~10 Years


Nanoscale Atomistic Simulations Intel 22nm FinFET Transistor

W

fill

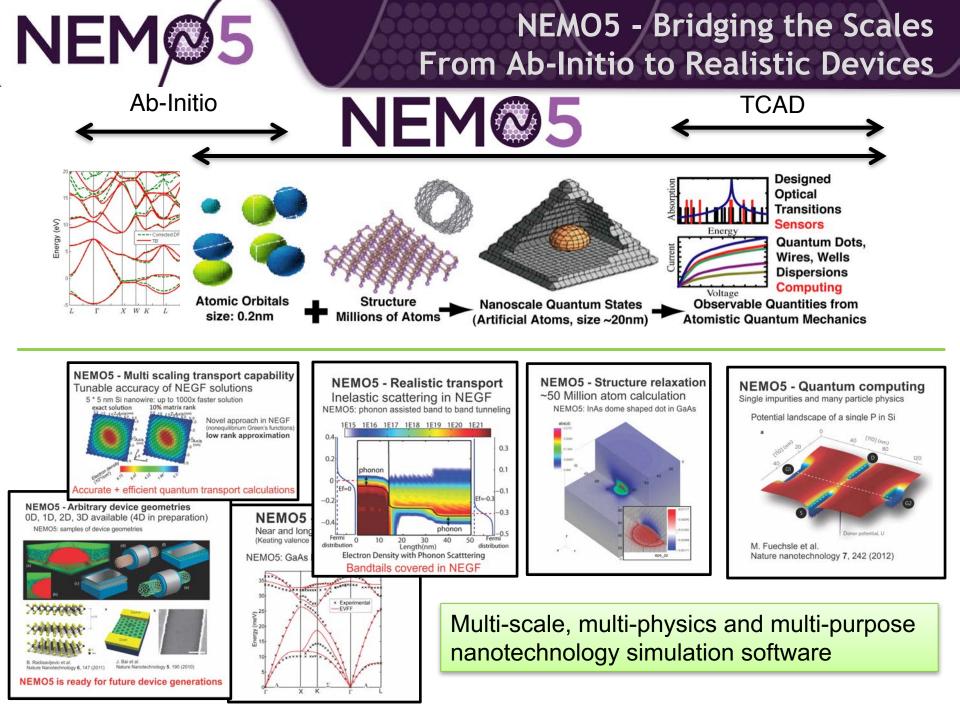
101

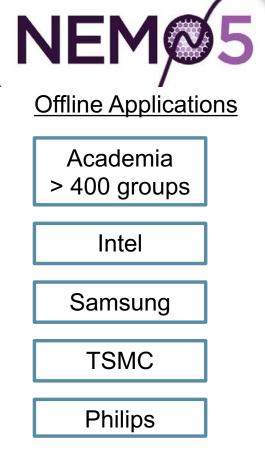
Me

NEMØ5

Gate length: 22nm = 176 atoms Active region: 8nm = 64 atoms

http://www.goldstandardsimulations.com/index.php/news/blog_search/simulation-analysis-of-the-intel-22nm-finfet/ http://www.chipworks.com/media/wpmu/uploads/blogs.dir/2/files/2012/08/Intel22nmPMOSfin.jpg




Nanoscale Atomistic Simulations CMOS Technology Scaling

Innovation Enabled Technology Pipeline Our Visibility Continues to Go Out ~10 Years

<u>32nm</u> 2009 Manufactu		Modeling	
		MO5	
		Grapheners Materials Synthesis Photonics	
A VINIK			
#- 150	I THE	Future options subject to change	

nm Node	22	14	10	7	5
Node atoms	176	122	80	56	40
Critical atoms	64	44 (?)	29(?)	20(?)	14 (?)
Electrons	160-190	64-80	30-38	18-23	11-15

Online Applications

nanoHUB

Broad Usage in Academia and Industry

Power 9 Tools: (By February, 2017)

23,874 users

88 citations

465,509 simulation runs

381 classes w/ 3,756 students

Large number of academic and industrial users worldwide

carter-impi-petsc34-gpu-libs
carter-impi-petsc34-libs
carter-gcc-petsc34

Broad Usage in Academia and Industry

(for Macs)
(gcc generic Kubuntu 10.04)
(gcc + MKL on fedora)
(gcc static build on ubuntu)

Available NEMO5 configurations for CPU, GPU, Xeon Phi

ds checks)

(Configuration with PETSc 3.4 built with GPU support using CUSP and CUSPARSE)
(same as carter-gcc-petsc34 but uses libs in group's shared application space: Conte)
(Use precompiled libraries on Conte. GCC 5.2.0, PETSc/SLEPc 3.5.4, LibMesh 0.9.5 in optimized mode)
(Conte configuration compiled with Intel 14 compiler; used for MIC offload)

(Rice configuration compiled with Intel 16 compiler and PETSc 3.7 (Rice configuration compiled with Intel 16 compiler and PETSc 3.7

(Stampede TACC

(Stampede-KNL T (Stampede TACC

Sup Sup

3 supercomputer with Intel and petsc34) 3 supercomputer with Intel and petsc34)

3 supercomputer with gcc 3 supercomputer with gcc

avour cluster with Xeor

supercomputer with inte supercomputer) supercomputer with intel NEMO5 designed for compatibility with "any" system: from a PC to Tianhe-2

Ibs stampede stampede-knl stampede-libs

CONTE

NEMO5 and nanoHUB

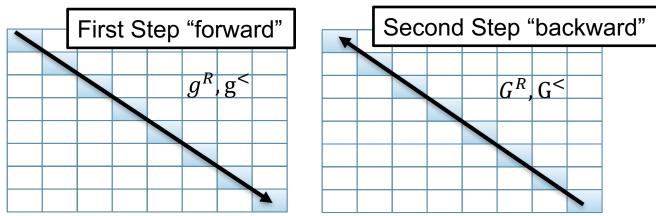
Science on Blue Waters

- » Electron-phonon scattering
- » Multi-quantum well LEDs
- » Compact model for copper grain boundaries

9

- » Flying qubit modeling
- Summary

Electron-phonon Scattering State of Literature Solutions


Key equation: $(E - H - q\phi - \Sigma^R)G^R = I$ Solving G^R involves an inversion.

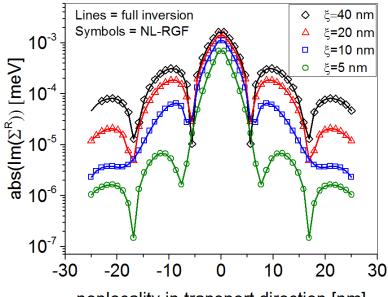
Status of literature:

Solve block diagonal Green's functions with either

- recursive Green's function method (RGF) -- not enough physics
- dense Green's function matrices ("full inversion") -- numerically unfeasible

Typical RGF implementation:

Known RGF-algorithms are incompatible with nonlocal scattering



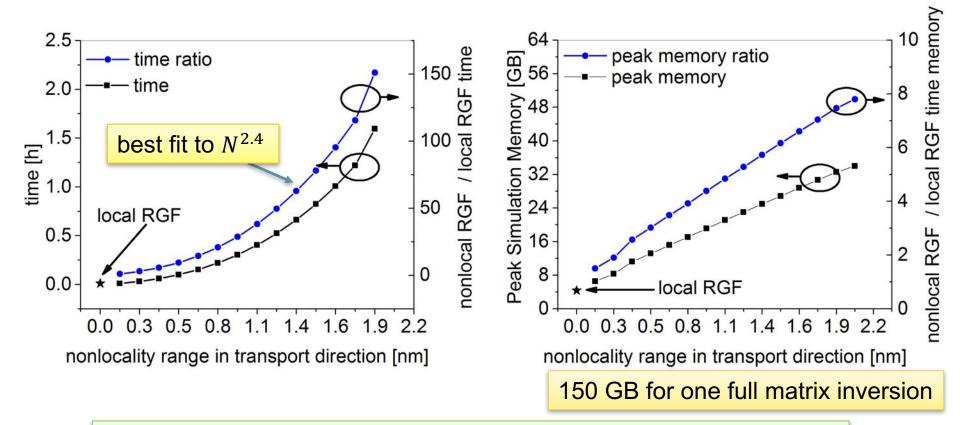
Electron-phonon Scattering Nonlocal RGF and Validation

Non-local RGF method: Adding off-diagonal blocks Bulk GaAs Tight binding $sp^3d^5s^*$ Polar optical phonon $\sum_{scatt}^{R/<*}$

 ξ – screening length

nonlocality in transport direction [nm]

Non-local RGF produces accurate simulation result



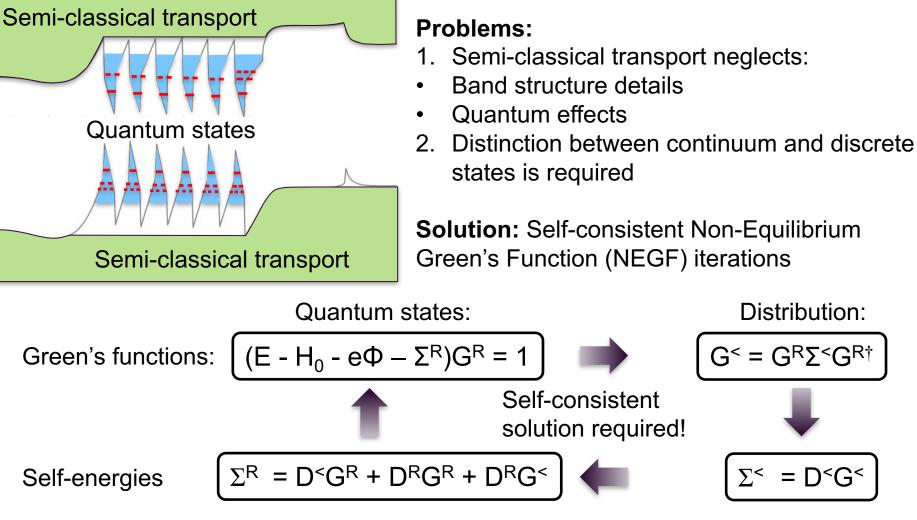
Electron-phonon Scattering Nonlocal RGF Performance

2x2x20 nm wire in $sp^3d^5s^*$ – single energy point Nonlocality -> number of off-diagonal blocks used

Nonlocal RGF is computationally expensive and memory consuming Need 500 ~ 2000 nodes per simulation

NEMO5 and nanoHUB

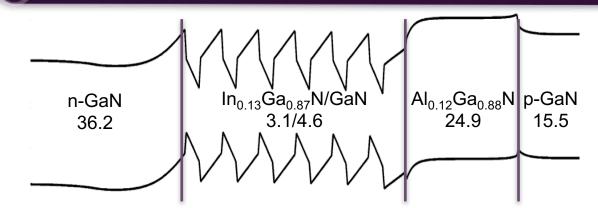
Science on Blue Waters


- » Electron-phonon scattering
- » Multi-quantum well LEDs
- » Compact model for copper grain boundaries
- » Flying qubit modeling
- Summary

Multi-quantum Well LEDs Classical Models Missing Key Information

Self-consistent NEGF is expensive for large LED devices

Distribution:


= D<G<

 $G^{<} = G^{R}\Sigma^{<}G^{R\dagger}$

 $\Sigma^{<}$

Multi-quantum Well LEDs Simulation Load: Single I-V

Simulation load:

- Simulation domain size: 123 nm (952 atoms)
- matrix size: ~ 19,000 by 19,000

Computation details:

Typical Device

Structure (Units in nm)

- 10 bias points for each current-voltage (I-V) curve
- 100 nodes on Blue Waters for each bias point
- On average takes ~ 0.5 hour per job

Total simulation time for single I-V (10 points): 500 node hours

Multi-quantum Well LEDs Total Simulation Load

Calibrate physics parameters:

- 316 I-V curves
- 158,000 node hours

Sample production run:

- Sweep over various device structure parameters including barrier width, Indium concentration, Aluminum concentration, etc.
- Compare device performance over different designs
- 10~20 I-V curves for each parameter
- ~ 120 I-V curves in total
- ~ 60,000 node hours

Large amount of mid-size jobs need a large system to minimize turnaround time

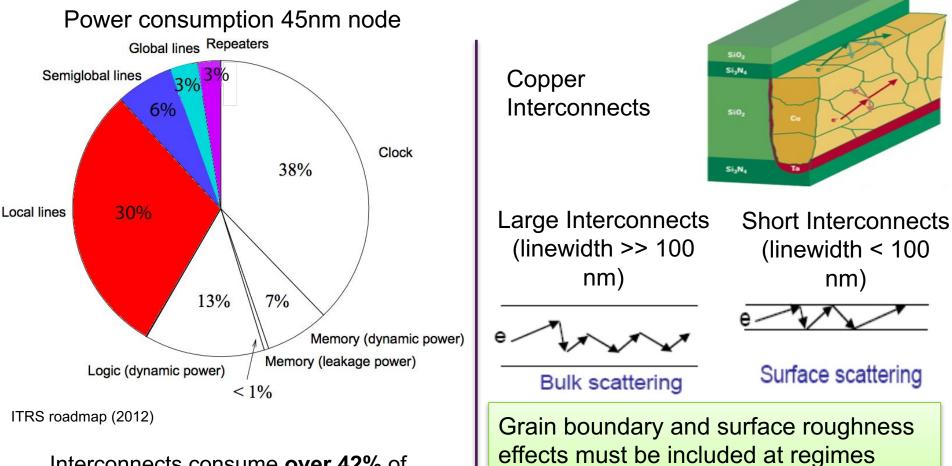
NEMO5 and nanoHUB

Science on Blue Waters

- » Electron-phonon scattering
- » Multi-quantum well LEDs

» Compact model for copper grain boundaries

- » Flying qubit modeling
- Summary

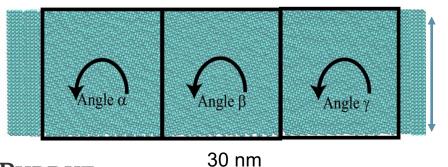


Compact Model for Cu Grain Boundaries Power Consumption of Cu Interconnects

where the interconnect size is small

Problem: Downscaling has reduced interconnect size, which has increased resistivity and static power consumption in electronic devices.

Interconnects consume **over 42%** of the power in a modern chip.


Compact Model for Cu Grain Boundaries Traditional Model and Why Blue Waters

Challenges of traditional model:

- Fail to describe the effect of surface roughness and grain boundary individually
- Use a pure fitting process and result in a lack of physical meaning of those parameters

Solution: Construct a grain boundary effects model based on atomistic model rather than pure fitting

Grain boundaries (GB) are created for relaxed copper interconnects misoriented by an **angle** $(\alpha,\beta.\gamma)$ 10 nm

Computational requirements:

- ~ 800 samples to statistically describe the GB effects on copper interconnects as a function of the misorientation (α,β.γ)
- 3,520 FP cores (220 nodes) for 0.46h per sample
- ~ 100 node hours per sample
- ~ 80,000 node hours per interconnect structure
- Multiple interconnect structures
 needed for various transistor devices

Large amount of simulation hours needed for real engineering design

19

NEMO5 and nanoHUB

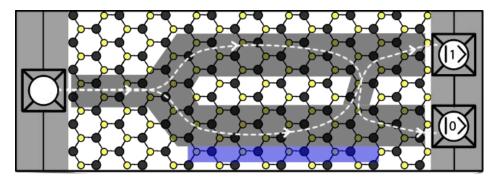
Science on Blue Waters

- » Electron-phonon scattering
- » Multi-quantum well LEDs
- » Compact model for copper grain boundaries
- » Flying qubit modeling
- Summary

Flying Qubit Modeling

Key challenges of qubits:

- Superconducting qubits scalable only to a handful of qubits¹
- Semiconductor quantum dot qubits scalable², but suffer from decoherence upon reading³

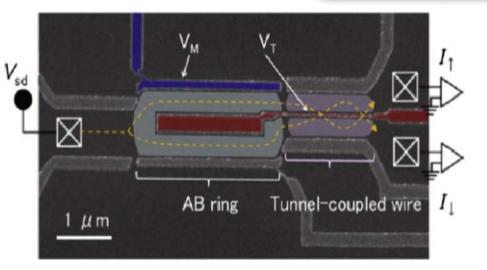

Why it matters:

NEM

 A usable quantum computer requires millions of qubits⁴ to allow for quantum error correction⁵

Our solution:

- Flying qubit -> electrons are moving vs stationary in quantum dots
- Use quantum transport to read qubit information with Mach-Zehnder interferometer⁶ for minimal interference
- Qubit superposition controlled by gate (shown in blue)


Flying qubits are very promising for large scale quantum computers

[1] L. M. Vandersypen, M. Steffen, G. Breyta, I. L. Chuang et. al, Nature, vol. 414, no. 6866, pp. 883–7, 2001.
[2] I. L. Chuang, Q. Computation, R. Laflamme, J. I. Cirac, J. M. Raimond et. al, Science (80)., vol. 339, March, pp. 1174–1179, 2013.
[3] W. G. Van Der Wiel et. al, Rev. Mod. Phys., vol. 75, no. January, pp. 1–22, 2003.
[4] L. R. Schreiber and H. Bluhm, Nat. Nano., vol. 9, no. 12, pp. 966–968, 2014.
[5] T. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. O'Brien, Nature, vol. 464, no. 7285, pp. 45–53, 2010.
[6] T. Zibold, P. Vogl, and A. Bertoni, Phys. Rev. B - Condens. Matter Mater. P

Flying Qubit Modeling Simulation Requirements

AlGaAs/GaAs Interferometer device, taken from Ref 1.

Size limitations: Micrometer dir

- Micrometer dimensions, very slow to model atomistically
- 2D device solutions allow control of decoherence^{2,3} but require large dimensions of tens or hundreds of nanometers

Computational requirements:

- With basis reductions, each simulation expected to require 1,000 nodes for 40 hours, 40,000 node hours
- ~ 20 simulations needed for various 2D materials/dimensions

Need 800,000 node hours with optimized algorithm

[1] S. Takada, M. Yamamoto, C. Bäuerle, S. Tarucha et. al, Appl. Phys. Lett., vol. 107, no. 6, 2015.

[2] M. Lundstrom and Z. Ren, IEEE Trans. Electron Devices, vol. 49, no. 1, pp. 133–141, 2002.

[3] C. Blömers, T. Schäpers, T. Richter, R. Calarco, H. Lüth, and M. Marso, Appl. Phys. Lett., vol. 92, no. 13, 2008.

NEM

- NEMO5 and nanoHUB
- Science on Blue Waters
 - » Electron-phonon scattering
 - » Multi-quantum well LEDs
 - » Compact model for copper grain boundaries
 - » Flying qubit modeling
- Summary

- NEMO5: multi-scale, multi-physics and multi-purpose nanotechnology simulation software
- Atomistic scale simulations are numerically expensive
- Blue Waters is necessary for:
 - » Large-size (~ 1000 nodes) jobs
 - ✓ Capability computing

NEM

- ✓ Meet the minimum memory and cores requirements
- ✓ non-local RGF, flying qubits, etc.
- » Mid-size (~ 100 nodes) jobs
 - ✓ Capacity computing
 - \checkmark Minimize the turnaround time of a large amount of simulations
 - ✓ LEDs, Cu interconnect, etc.

