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NEM@5 Outline

* NEMO5 and nanoHUB

« Science on Blue Waters
» Electron-phonon scattering
» Multi-quantum well LEDs
» Compact model for copper grain boundaries
» Flying qubit modeling

* Summary
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Nanoscale Atomistic Simulations
CMOS Technology Scaling

Innovation Enabled Technology Pipeline
Our Visibility Continues to Go Out ~10 Years

32nm 22nm 14nm 10nm 7nm 5nm
2009 2011 2013 2015+

Manufacturing Development -

Future Options
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Nanoscale Atomistic Simulations
Intel 22nm FinFET Transistor

Gate length: 22nm = 176 atoms
Active region: 8Bnm = 64 atoms

http://www.goldstandardsimulations.com/index.php/news/blog_search/simulation-analysis-of-the-intel-22nm-finfet/
http://www.chipworks.com/media/wpmu/uploads/blogs.dir/2/files/2012/08/Intel22nmPMOSfin.jpg



Nanoscale Atomistic Simulations
CMOS Technology Scaling

NEM@5

Innovation Enabled Technology Pipeline
Our Visibility Continues to Go Out ~10 Years

32nm
2009

Manufactu
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nm Node 22 14
Node atoms 176 122 80

Critical atoms 64 44 297 207 147
Electrons 160-190 64-80 30-38 18-23 11-15



N EM v 5 NEMOS5 -/Bridging the Scales
' From Ab-Initio to Realistic Devices
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NEMOS - Multi scaling transport capability

Tunable accuracy of NEGF solutions NEMO_5 = ReaI|§t|c. transport NEMOS - Structure relaxation NEMOS5 - Quantum computing
5* 5 nm Si nanowire: up to 1000x faster solution Inelastic scattering in NEGF ~50 Million atom calculation Single impurities and many particle physics
Pactsolution: . 1% matriteank NEMOS: phonon assisted band to band tunneling NEMOS: InAs dome shaped dot in GaAs : : e
’ s Novel approach in NEGF Potential landscape of a single P in Si
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NEM

Offline Applications
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Online Applications
; Imagery ©2011(?1A'3‘A, Terrahletrics, Map data ©2011 Geocentre Consutting, MapLink, Tele Atlas - Term|
nanoHUB Power 9 Tools: (By February, 2017)
23,874 users

465,509 simulation runs industrial users worldwide
381 classes w/ 3,756 students

Large number of academic and

PURDU 88 citations
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Broad Usage in Academia and Industry

NEM@5
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NEM@5

* Science on Blue Waters
» Electron-phonon scattering

Outline




N EM fg,é 5 Electron-phonon Scattering
_ State of Literature Solutions
Key equation: (E — H — q¢ — XR)GE =1
Solving G® involves an inversion.

Status of literature:

Solve block diagonal Green’s functions with either

» recursive Green’s function method (RGF) -- not enough physics

» dense Green’s function matrices (“full inversion”) -- numerically unfeasible

Typical RGF implementation:

First Step “forward” Second Step “backward”

R

grigs GR G<

N

Known RGF-algorithms are incompatible with nonlocal scattering

PURDUE 10 o



N EM @ 5 Electron-phonon Scattering
_ Nonlocal RGF and Validation

Non-local RGF method: Bulk GaAs Tight binding sp3d°s*
Adding off-diagonal blocks Polar optical phonon ch/;t*

¢ — screening length

w N\ 1 Lines = full inversion
NN\ 108 ] Symbels =NL-RGF g
NN £ 10*
\\ \ : E
NN\ 3
\\\\ E 1 0-5 i
\\‘ :w/ ====2 o 4 Q Q N
® 10°4
107 - |

30 20 10 0 10 20 30
nonlocality in transport direction [nm]

Non-local RGF produces accurate simulation result
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N EM @ 5 Electron-phonon Scattering
Nonlocal RGF Performance
2x2x20 nm wire in sp3d°s* — single energy point
Nonlocality -> number of off-diagonal blocks used
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150 GB for one full matrix inversion

Nonlocal RGF is computationally expensive and memory consuming
Need 500 ~ 2000 nodes per simulation
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NEM@5

* Science on Blue Waters

» Multi-quantum well LEDs
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NEM ‘r‘ﬁé 5 Multi-quantum Well LEDs
_ Classical Models Missing Key Information
Semi-classical transport ~——__| Problems:

/\ /\ '/4\- 1 /__ 1. Semi-classical transport neglects:
i f{ F{' f[ .  Band structure details
}  Quantum effects

Quantum states 2. Distinction between continuum and discrete

ﬁ-'-\/‘ /Si /Fﬂ/ /XN/ | ste?tes is requirec-l

Solution: Self-consistent Non-Equilibrium
Semi-classical transport Green’s Function (NEGF) iterations

Quantum states: Distribution:

Green’s functions: [(E H, - ed — 3R)GR = 1] » [G<=GRZ<GRT]

Self-consistent
-~ . | 'l

solution required!

Self-energies [ZR = D<GR + DRGR + DRG<] ‘ [ < = D<G<]

Self-consistent NEGF is expensive for large LED devices
PURDUE 14 For)



Multi-quantum Well LEDs

Simulation Load: Single I-V

/ N

Typical Device n-GaN Ing 13Gag g;N/GaN Al.12Gag ggN|p-GaN

Structure (Units in nm) 36.2 3.1/4.6 24.9 15.5
NV

Simulation load:

» Simulation domain size: 123 nm (952 atoms)

* matrix size: ~ 19,000 by 19,000

Computation details:

10 bias points for each current-voltage (I-V) curve
* 100 nodes on Blue Waters for each bias point

» On average takes ~ 0.5 hour per job

Total simulation time for single I-V (10 points): 500 node hours

PURDUE 15 ]



NEM ;gé 5 Multi-quantum Well LEDs
_ Total Simulation Load
Calibrate physics parameters:

* 316 |-V curves
» 158,000 node hours

Sample production run:

» Sweep over various device structure parameters including barrier
width, Indium concentration, Aluminum concentration, etc.

» Compare device performance over different designs
* 10~20 I-V curves for each parameter

 ~120 |-V curves in total

* ~ 60,000 node hours

Large amount of mid-size jobs need a large system to minimize turnaround time
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NEM@5

* Science on Blue Waters

» Compact model for copper grain boundaries
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NEM@5

Compact Model for Cu Grain Boundaries

Power Consumption of Cu Interconnects

Problem: Downscaling has reduced interconnect size, which has increased resistivity

and static power consumption in electronic devices.

Power consumption 45nm node

Global lines Repeaters

Semiglobal lines

Clock

Local lines |

Memory (leakage power)

<1%

Logic (dynamic power)
ITRS roadmap (2012)

Interconnects consume over 42% of
the power in a modern chip.

PURDUE

Memory (dynamic power)
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Copper
Interconnects

Short Interconnects
(linewidth < 100
nm)

e— V"N

Surface scattering

Large Interconnects
(linewidth >> 100
nm)

e NN

Bulk scattering

Grain boundary and surface roughness
effects must be included at regimes
where the interconnect size is small



N EM @ 5 Compact Model for Cu Grain Boundaries
_ Traditional Model and Why Blue Waters

Challenges of traditional model: Computational requirements:
« Fail to describe the effect of surface « ~ 800 samples to statistically describe
roughness and grain boundary the GB effects on copper
individually interconnects as a function of the
« Use a pure fitting process and result in misorientation (a.,3.y)
a lack of physical meaning of those « 3,520 FP cores (220 nodes) for 0.46h
parameters per sample
Solution: Construct a grain boundary * ~ 100 node hours per sample
effects model based on atomistic « ~ 80,000 node hours per interconnect
model rather than pure fitting structure
* Multiple interconnect structures
Grain boundaries (GB) are created for needed for various transistor devices
relaxed copper interconnects
misoriented by an angle (a.,B.Y)  10mm
¢ ]
2 b A S i e arge amount of simulation hours
] B | Yaes | Vawey | needed for real engineering design
30 nm
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NEM@5

* Science on Blue Waters

» Flying qubit modeling

20
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N EMS Flying Qubit Modeling

Key challenges of qubits: Our solution:
Superconducting qubits scalable * Flying qubit -> electrons are moving vs
only to a handful of qubits’ stationary in quantum dots

« Semiconductor quantum dot qubits ¢ Use quantum transport to read qubit
scalable?, but suffer from information with Mach-Zehnder
decoherence upon reading? interferometer® for minimal interference

* Qubit superposition controlled by gate

Why it matters: (shown in blue)

* Ausable quantum computer -
requires millions of qubits* to allow . ..r‘ ~ ;o
for quantum error correction® g ,.' Y 3 2 l[@

yemes] .... .' Y ’.

Flying qubits are very promising for large scale quantum computers
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Flying Qubit Modeling

Simulation Requirements

1, Size limitations:
Ved ' @ HS  Micrometer dimensions, very slow to
RSP model atomistically
« 2D device solutions allow control of
decoherence?3 but require large
dimensions of tens or hundreds of
nanometers

| S ——

T

ABring  Tunnel-coupled wire [

AlGaAs/GaAs Interferometer device, taken
from Ref 1.

Computational requirements:

« With basis reductions, each simulation expected to require 1,000 nodes
for 40 hours, 40,000 node hours

» ~ 20 simulations needed for various 2D materials/dimensions

Need 800,000 node hours with optimized algorithm

[1] S. Takada, M. Yamamoto, C. Béuerle, S. Tarucha et. al, Appl. Phys. Lett., vol. 107, no. 6, 2015.
[2] M. Lundstrom and Z. Ren, IEEE Trans. Electron Devices, vol. 49, no. 1, pp. 133—141, 2002.
[3] C. Blémers, T. Schépers, T. Richter, R. Calarco, H. Liith, and M. Marso, Appl. Phys. Lett., vol. 92, no. 13, 2008.
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* Summary
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NEM@5

« NEMOS5: multi-scale, multi-physics and multi-purpose
nanotechnology simulation software

» Atomistic scale simulations are numerically expensive

* Blue Waters is necessary for:

» Large-size (~ 1000 nodes) jobs
v’ Capability computing
v' Meet the minimum memory and cores requirements
v non-local RGF, flying qubits, etc.
» Mid-size (~ 100 nodes) jobs
v' Capacity computing
v" Minimize the turnaround time of a large amount of simulations
v LEDs, Cu interconnect, etc.
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