

Susan Bates

National Center for Atmospheric Research
Petascale Computing Resources Allocation (PRAC)
PI: Don Wuebbles/Robert Rauber, U. Illinois

Zach Zobel (U. Illinois)

Justin Small, Christine Shields (NCAR)

NCAR collaborators: Nan Rosenbloom, Warren Washington,

Julio Bacmeister, Colin Zarzycki, Kevin Reed, Rich Neale, John Truesdale, Cecile Hannay, Gary Strand

NCAR is supported by the National Science Foundation

BLUE WATERS

Susan Bates

National Center for Atmospheric Research
Petascale Computing Resources Allocation (PRAC)
PI: **Don Wuebbles**/Robert Rauber, U. Illinois

Zach Zobel (U. Illinois)

Justin Small, Christine Shields (NCAR)

NCAR collaborators: Nan Rosenbloom, Warren Washington,

Julio Bacmeister, Colin Zarzycki, Kevin Reed, Rich Neale, John Truesdale, Cecile Hannay, Gary Strand

NCAR is supported by the National Science Foundation

Why Blue Waters?

- 0.25°atmos/land –only (30 years)
 - o 12K node-hours per model year = 0.36M node-hours for one simulation
 - 4 present day 8 future scenarios (~4.3M)
- Fully-coupled 0.5° atmos/land 1° ocean/sea ice
 - o 1 PI control, 3 20th Century, 12 future scenarios
- Fully-coupled 0.25° atmos/land 1° ocean/sea ice
 - o 10-12K node-hours per model year = 1-1.8M node-hours for one simulation
 - 1 PI control, 2 climate sensitivity, 3 20th Century, 6 future scenarios (~12M-21M)
- Fully-coupled 0.25° atmos/land 0.1° ocean/sea ice
 - o 32.3K node-hours per model year = 3.23M node hours for one simulation
 - o 1 PI control, 1 20th Century, 2 future scenarios (~13M)

Comparison Between Present and Future Precipitable Water

Tropical Cyclone (TC) Tracks

Observations: IBTrACS

Tropical cyclone algorithm and tracker follows Zhao et al. (2009) using 3-hourly model output.

Courtesy Kevin Reed, see also Wehner et al. (2014, JAMES)

Extra-tropical Storm (ETC) Tracks

(for one model year)

0.25° atmos-only

Extratropical cyclone tracks and storm properties are found using TempestExtremes (Ullrich and Zarycki, 2016).

Present Day and Future ETC Storm Count

0.25° atmos-only

Present Day 1985-2005

Present Day 1985-2005 (modified dust)

Future RCP8.5 2070-2090

Future RCP8.5 2070-2090 (modified SST)

Present Day and Future ETC Track Density

0.25° atmos-only

All storms

Units are average hours per year in which a storm is found within a 4° x 4° gridbox

Eady Growth Rate (850mb)

0.25° atmos-only

Units = day^{-1}

High Resolution Ocean

0.25° atmos - 0.10° ocean

1° atmos – 1° ocean

High Resolution Ocean

0.25° atmos - 0.10° ocean

Ocean Resolution

0.25° atmosphere 1° vs 0.10° ocean

Sample UK Events, TMQ

Movies of 1 year's worth of AR events strung together

1 degree

0.1 degree

Ocean Warming Trends

Compared to 1° CESM

1° atmos – 1° ocean

1° atmos - 0.10° ocean

Future Changes in Days that exceed 95°F

12km atmos

30N

60W

120W

RCP8.5 – Present Day

Regional Maximum Temperature

12km atmos

Publications

- Bacmeister, J. T., K. A. Reed, C. Hannay, P. Lawrence, S. Bates, J. Truesdale, N. Rosenbloom, , and M. Levy, 2016: Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model, Climatic Change, doi: 10.1007/s10584-016-1750-x.
- Gettelman, A., D.N. Bresch, C.C. Chen, J.E. Truesdale, and J.T. Bacmeister, 2017: Projections of future tropical cyclone damage with a high-resolution global climate model, *Climatic Change*, doi:10.1007/s10584-017-1902-7.
- Reed, K. A., J. T. Bacmeister, N. A. Rosenbloom, M. F. Wehner, S. C. Bates, P. H. Lauritzen, J. E. Truesdale, and C. Hannay, 2015: Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model. Geophys. Res. Lett., 42, 3603–3608.
- Zarzycki, C. M., Reed, K. A., Bacmeister, J., Craig, A. P., Bates, S. C., and Rosenbloom, N. A., 2016: Impact of ocean coupling strategy on extremes in high-resolution atmospheric simulations, Geosciences Model Development, 9, 779-788, doi:10.5194/gmd-9-779-2016.
- Zobel, Zachary, et al. "Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States." Climate Dynamics (2017): 1-22.

Definitions

Tracking Algorithm

$$ZN == |Q_{threshold}| >= |Q_{mean}| + 0.3(|Q_{max} - Q_{mean}|)$$

Mean = zonal mean and Max = zonal maximum

ZN = Zhu and Newell (1998)

Pineapple Express 850 mb Wind Speed >= 10 m/s 270° > Wind Direction > 180° DY/DX >= 2 (minimum DY = 200km)

UK Storms

- 850 mb Wind Speed >= 25 m/s 360° > Wind Direction > 180° DY/DX >= 2 (minimum DY = 200km)
- France/Iberia n Peninsula
- 850 mb Wind Speed >= 15 m/s 360° > Wind Direction > 180° DY/DX >= 2 (minimum DY= 200km)

Summary of High Res Ocean

- Improvements with resolution
 - Atmosphere TCs, Extreme precip, eastern boundary SST
 - Ocean eddies, western boundary SST, small scale air-sea interaction
 - o ENSO
- Stays same with resolution
 - Southern ocean wind bias
 - Subsurface warming
- Gets worse with high resolution
 - ITCZ too strong
- Caveat: results apply to CESM.

Tropical Cyclone (TC) Tracks

Observations

 0.25° atm/lnd -0.1° ocn/sea ice

AR Climatology Resolution 50 km Ensemble Suite

25 km (1deg ocn) Single Run

Eddy Kinetic Energy

0.25° atmos-only

(500mb)

Units = m^2

Courtesy Rich Neale