Evolution of the Small Galaxy Population

Thomas Quinn
University of Washington
NSF PRAC Award 1144357
Fabio Governato
Lauren Anderson
Michael Tremmel
Ferah Munshi
Joachim Stadel
James Wadsley
Greg Stinson

Laxmikant Kale
Filippo Gioachin
Pritish Jetley
Celso Mendes
Amit Sharma
Lukasz Wesolowski
Gengbin Zheng
Edgar Solomonik
Harshitha Menon
Orion Lawlor
Outline

- Scientific background (Why it matters)
- Need for high resolution (Key Challenges)
- Project goals (Why Blue Waters)
- Charm++ and ChaNGa (Key Challenges)
- Preliminary results (Accomplishments)
- Work from the PAID program
- STEM education/training (Broader Impacts)
Galaxy formation: can this...
... turn into this?
Modeling Star Formation: it's hard

- Gravitational Instabilities
- Magnetic Fields
- Radiative Transfer
- Molecular/Dust Chemistry
- Driven at large scales: differential rotation
- Driven at small scales: Supernovae and Stellar Winds
- Scales unresolvable in cosmological simulations
Resolution and Subgrid Models

• Maximize Simulation Resolution
 – Capture tidal torques/accretion history (20+ Mpc)
 – Adapt resolution to galaxy (sub-Kpc)

• Capture Star Formation in a sub-grid model
 – Stars form in high density environments
 – Supernovae/stellar winds/radiation regulate star formation
 – Mitigate issues with poor resolution (overcooling)
 – Tune to match present day stellar populations
Blue Waters: High Redshift Galaxies

- 25 Mpc Volume
- Few million particles/galaxy
- Goals:
 - Models to compare with HST Frontier fields
 - Physical properties of high z galaxies and connection to the present day
Charm++

• **C++-based parallel runtime system**
 - Composed of a set of globally-visible parallel objects that interact
 - The objects interact by asynchronously invoking methods on each other

• **Charm++ runtime**
 - Manages the parallel objects and (re)maps them to processes
 - Provides scheduling, load balancing, and a host of other features, requiring little user intervention
Charm Nbody GrAvity solver

- Massively parallel SPH
- SNe feedback creating realistic outflows
- SF linked to shielded gas
- SMBHs
- Optimized SF parameters
Overlap of Phases
Scaling to .5M cores

![Graph showing scaling to .5M cores](image-url)
Clustered/Multistep Challenges

- Load/particle imbalance
- Communication imbalance
- Fixed costs:
 - Domain Decomposition
 - Load balancing
 - Tree build
Load Variance
ORB Load Balancing
Multistep speedups for 2 billion clustered particles
The Vulcan

- 2 billion particles
- (25 Mpc)^3
- Forces ~ 350pc
- SPH ~ 40 pc
- 100s of galaxies
- 5 TB dataset
Luminosity Function

Faint galaxies reionize the Universe

Anderson et al 2016

![Graph showing reionization of the Universe with redshift and ionization rate](Image)
Faint galaxies reionize the Universe

Anderson et al 2016
Scatter in Stellar Mass/Luminosity

Ferah Munshi, in prep.
Black hole/AGN feedback

• Supernova feedback doesn't suppress star formation in massive galaxies
 – Modeling of more energetic feedback required

• Components of AGN modeling:
 – Seed (1e6 Msun) BH form in dense, low metallicity gas
 – BH grow from accreting gas, and release energy into the surrounding gas (Active Galactic Nuclei)
 – BH in merging galaxies sink to the center and merge (LIGO, eLISA)
Tremmel et al 2016

\[\frac{M_*}{M_{\text{vir}}} \]

\[10^{-1} \]

\[10^{-2} \]

\[10^{-3} \]

\[10^{11} \]

\[10^{12} \]

\[10^{13} \]

- Romulus25, \(z = 0.25 \)
- Kravtsov+ 14, \(z < 0.1 \)
- Moster+ 13, \(z = 0.25 \)
Black Hole Dynamics

![Graph showing distance from halo center over time with different colors representing different conditions: No Corr., Dyn. Fricht., and Advection. The x-axis represents time in Gyr, and the y-axis represents distance from the halo center in parsecs (pc).]
PAID: ChaNGa GPU Scaling

- ChaNGa has a preliminary GPU implementation
- Goals of PAID:
 - Tesla → Kepler optimization
 - SMP optimization
 - Multistep Optimization
 - Load balancing
- Personnel:
 - Simon Garcia de Gonzalo, NCSA
 - Michael Robson, Harshitha Menon, PPL UIUC
 - Peng Wang, Tom Gibbs (NVIDIA)
PAID GPU Progress

- 2X speed up of main gravity kernel; 1.4X speedup of 2nd gravity kernel
 - Interwarp communication
 - Caching of multipole data
 - Higher GPU occupancy
 - Overall speedup of 60%

- SMP queuing of GPU requests
 - Reduced memory use, allowing more host threads
 - GPU memory management still an issue
Broader Impacts: Pre-Majors and Supercomputing

- UW Pre-Major in Astronomy Program:
 - Engage underrepresented populations in research early
 - Establish a cohort
 - Plug major leak in the STEM education pipeline

- Simulation data analysis is ideal for this research
 - Science and images are compelling
 - Similarity to Astronomical data reduction
Zoe Deford
Joshua Smith
(UW Freshman)
Simulated Images
Take Aways

• Scaling is necessary, but hard
 – Need all the help we can get
• “Break through” results are unexpected
• “Simulated observations” enable broad impact
Acknowledgments

- NSF ITR
- NSF Astronomy
- NSF XSEDE program for computing
- BlueWaters Petascale Computing
- Blue Waters PAID Program
- NASA HST
- NASA Advanced Supercomputing