Realistic Simulations of the Intergalactic Medium: The Search for **Missing Physics**

Michael Norman
James Bordner
San Diego Supercomputer Center
University of California San Diego

Collaborators: David Tytler, Pengfei Chen (UCSD)
Observing the intergalactic medium in quasar absorption line spectra

Lyman α forest
What is Observed

Kirkman & Tytler (1997)
The Cosmic Web: Origin of the Ly α forest absorption

Cosmic web formed by gravitational clustering of dark matter and baryons (H and He)

Hundreds of millions of lightyears
Simulation v. observation: amazing agreement

Kirkman & Tytler (1997)

Zhang et al. (1997)
Physical Origin of the Lyman Alpha Forest

- intergalactic medium exhibits cosmic web structure at high z
- models explain observed hydrogen absorption spectra

Zhang, Anninos, Norman (1995)
a 4096^3 hydro-cosmology simulation
L=614 Mpc, Cell=150 kpc
A small but persistent discrepancy has emerged between sim. & obs. as higher precision has been achieved

<table>
<thead>
<tr>
<th>Possible Explanation</th>
<th>Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observational systematics</td>
<td>NO</td>
</tr>
<tr>
<td>Simulation not converged</td>
<td>NO</td>
</tr>
<tr>
<td>Simulation box size too small</td>
<td>NO</td>
</tr>
<tr>
<td>Missing IGM physics</td>
<td>MAYBE</td>
</tr>
<tr>
<td>Missing galaxy HI absorption</td>
<td>MAYBE</td>
</tr>
</tbody>
</table>

This PRAC project
Quantifying the discrepancy:

Flux PDF

![Graph showing flux PDF with labels for high and low transmission, indicating too many and not enough.](image-url)
Fiddling with the standard LAF model does not improve agreement

Curves have wrong shape
What we are exploring with Blue Waters

Standard model
IGM ionized by homogeneous UVB

Quasar model
IGM ionized by quasar point sources
Why Blue Waters is Needed

• Quasar model requires *3D time-dependent multifrequency radiative transfer*
 – Very computationally intensive

• Scale separation requires *very large grids*
 – Must resolve Ly α forest absorbers (25 kpc) in a box large enough to contain hundreds of quasars (100 Mpc) \rightarrow 40003 grids (target)

• Model development requires high throughput for experimentation at scale

Progress requires combination of capacity and capability that only Blue Waters can provide
Why Multifrequency RT?
A: QSOs have hard UV spectrum

- [54.4, 65] eV
- [65, 75] eV
- [75, 125] eV
- [125, 155] eV
- [155, 400] eV

Photoheating

6/13/2016 - M. L. Norman
Blue Waters Symposium 2016
Progress

• Quasar model implemented and tested at low-resolution (512^3 and 1024^3 grids)
 – 100’s of time-dependent quasar sources
 – 5 group implicit flux limited diffusion
 – **Enzo** code + **yt** for inline halo finding

• High resolution science run underway
 – 2-3 month completion time
 – 1-2 month for data analysis
Helium reionization by time-dependent quasars: Enzo MGFLD simulation on Blue Waters

186 Mpc

Projected He+ fraction

z = 3.343805

z = 3.087600

z = 2.918258
Redshift Evolution of $\chi(\text{He}^{++})$ and T

He++ volume fraction

Temperature

6/13/2016 - M. L. Norman
Blue Waters Symposium 2016
Inhomogeneous heating of the IGM by quasars

1024^3 Enzo-MGFLD on Blue Waters

Baryon density

$Z=3.41$

Baryon temperature

118 Mpc
Inhomogeneous heating of the IGM by quasars

1024^3 Enzo-MGFLD on Blue Waters

He$^+$ fraction

$Z=3.41$

Photoheating rate

118 Mpc
Rollup

- **Key Challenges**: high fidelity simulation of the IGM including inhomogeneous quasar ionization and heating
- **Why it Matters**: may explain discrepancy between theory and observation
- **Why Blue Waters**: capability and capacity to develop and run very large, computationally and memory intensive simulations
- **Accomplishments**: low-res runs completed; high-res run in progress
- **Blue Waters team contributions**: assistance with topology-aware scheduling
- **Broader Impact**: drove the development of MGFLD capability for the **Enzo** community code
- **Shared Data**: none yet
- **Products**: MGFLD capability in **Enzo** code