
Topology Matters

Jeremy Enos jenos@illinois.edu
System Management & Development Lead

TAS Enhancements Due 2016

•  Serial job optimizations
•  Processing
•  Transparency

•  Maintenance optimizations
•  Internal and External Fragmentation Exploitation
•  TAS bypass option
•  Max job count, utilization, and iteration time improvement

deliverables
•  Just 1 bug related to TAS code after initial ramp-up

period!

2 Topology Aware Scheduler Report

TAS: A Brief Review

•  Medium to large, communication
intensive applications competed
for network resource due to torus
placement, resulting in longer and
unpredictable runtimes

•  Scheduler modified to place jobs
into route-friendly prisms to
reduce inter-job contention

3 Topology Aware Scheduler Report

TAS Effects

•  Faster and more consistent runtimes for large
communication intensive jobs

•  Faster turnaround time for small jobs
•  Longer turnaround time for medium jobs (1k

nodes) – we’re working on this
•  Gemini failure (rare) impact isolated to fewer jobs
•  Reduced system utilization
•  More work done overall

4 Topology Aware Scheduler Report

System-wide aggregate network injection
rate average by week

5 Topology Aware Scheduler Report

Last 6 months of each compared:
Network Injection = 42% increase with TAS

Tradi&onal	 TAS	Ramp	Up	 TAS	

2.57 TB/s

3.66 TB/s

Improved average byte*hop count

6 Topology Aware Scheduler Report

Represents network burden per byte transmitted (lower is better)

Tradi&onal	 TAS	

58% longer average byte
hop distance before TAS

Get the most out of the scheduler

•  Use backfill opportunities (showbf)
•  >90% jobs backfill, ~48% by node hour

•  Use flexible walltime specification; checkpoint
•  Don’t hyper-exaggerate requested walltime
•  Charge factor discount incentives for the above
•  Job to job interference improbable – additional

options can guarantee it if needed (except for I/O
traffic)

7 Topology Aware Scheduler Report

Portal: Optimal checkpoint interval

8 Topology Aware Scheduler Report

https://bluewaters.ncsa.illinois.edu/storage#checkpoint

Portal: Backfill representation

9 Topology Aware Scheduler Report

https://bluewaters.ncsa.illinois.edu/machine-status

Wall clock accuracy

10 Topology Aware Scheduler Report

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	

Wallclock	accuracy	average	%	
Top	71	consumers	last	2.5	weeks	

Top priority issues

•  Job dependency reliability (fixed)
•  Iteration time

•  Interactive job response
•  Reservation depth (to reach medium size jobs)

•  Efficient job dependency trains
•  Graceful preemption

•  Checkpoint warning signals (kill signal not delayed
properly)

11 Topology Aware Scheduler Report

ED 209 Checkpoint
Warning System

12 Topology Aware Scheduler Report

“Checkpoint and exit
your app NOW. You
have 20 seconds to

comply!!!”

“You have 10
seconds to
comply!!!”

…App begins checkpoint

Challenging Job Mixes

•  Wide & Short (shouldn’t see >1 in queue at once)
•  Long & Narrow (fenced)

13 Topology Aware Scheduler Report

no
de

s

time
HIGH	

Location aspect increases challenge

14 Topology Aware Scheduler Report

Example drain cost

15 Topology Aware Scheduler Report

Serial Jobs and Bundling

•  Serial workloads see no TAS benefit
•  Small fill is good provided:

•  < 3-4k jobs. Algorithms have
node_count x job_count functions

•  Task length is short, else fragmentation over time
•  Bundled fill is good provided:

•  Task length is relatively long (to be worth drain penalty)
•  Task length is relatively consistent (intra-job efficiency)

•  Enhancements are coming, recommendation will change
•  Exceptions exist on case by case basis, ask for help

16 Topology Aware Scheduler Report

Serial Jobs and Bundling

•  Task subscheduler solutions exist on Blue Waters
•  E.g. Swift

•  If large job and flexible task count, try to
maximize prism efficiency
•  Use “checkjob” to see “internal fragmentation %”
•  Blue Waters staff can help provide

recommendations for job sizes

17 Topology Aware Scheduler Report

Questions

?
18 Topology Aware Scheduler Report

Outline todo

•  Top bugs/issues
•  Iteration time/speed - resdepth
•  Checkpoint signal for preempted jobs

•  Backfill plots on portal
•  Commflags
•  Wide and short multiple – interactive instead?
•  Long and narrow
•  Walltime overspecification

•  48 hrs now
•  Serial jobs

•  Bundling, unbundling
•  Prism fill, intfrag, checkjob

•  Checkpointing signal warning
•  Discounts
•  Priority reservations – 93% jobs backfill, 48% node hours backfill

19 Topology Aware Scheduler Report

TAS: Acceptance

•  SPP and other codes used for acceptance test
recommendation

•  showed a 3% net gain in throughput
(performance gain vs utilization reduction) and a
13.4% runtime CV reduction

•  December 2014 NSF Panel Recommendation:
“… the implementation of TAS may impact expansion time
for all jobs and system utilization. The panel recommends
that the team re-evaluate these metrics after gaining
experience with TAS in operations and adjust as
necessary.”

20 Topology Aware Scheduler Report

TAS Transition Plan (December 2014)

•  Ramp up period as teams learn advanced options
•  Tune knobs for placement conservatism, policy

incentives
•  Continued analysis of utilization and science

throughput
•  Evaluate alternative measurements of science

throughput comparison

21 Topology Aware Scheduler Report

2015 Timeline

•  Jan 15 TAS enabled
•  Q1

•  Bug fixes (utilization impacted)
•  Configuration correction for HSN characteristics

•  Q2
•  Policy tuning to increase placement aggressiveness
•  Configuration tuning to workload sizes
•  XE/XK physical move (to benefit utilization)
•  Worked with teams to tune job submission for

improved backfill eligibility

22 Topology Aware Scheduler Report

2015 Timeline

•  Q3
•  Introduce discount incentives for utilization-friendly job

submission parameters
•  Q4

•  Prototype DP FLOP rate monitoring enabled
•  New comparison period with traditional scheduler

23 Topology Aware Scheduler Report

A word about “utilization”

•  System utilization traditionally refers to “node
occupancy percentage”

•  Peaking node occupancy does not necessarily
peak system output, which is also affected by:
•  Network utilization
•  Filesystem utilization
•  FLOPs utilization

•  Using “node occupancy” term going forward

24 Topology Aware Scheduler Report

Observations:

•  TAS is successful in improving performance and
consistency of communication intensive jobs

•  TAS is successful in eliminating job to job
interference due to network contention

•  Average node occupancy decreased in part due to
additional placement constraints

•  System aggregate bytes delivered increased in
spite of occupancy reduction

•  Expansion factor decreased overall
•  Partner complaints about slowness diminished

25 Topology Aware Scheduler Report

What scientists report on performance

•  “My application configurations run 1.5 - 2x faster
with topology aware placement” –P.K. Yeung

•  “NAMD runs up to 25% faster under the topology
aware scheduler. Blue Waters is where we go to
benchmark our code because it is so consistent.”
–Jim Phillips

26 Topology Aware Scheduler Report

Scaling effect example (MILC)

27 Topology Aware Scheduler Report

1.45x speedup at
576 nodes

Near linear scaling
only possible with
TAS placement

Evaluating Science Throughput

•  Performance increase needs to be greater than node
occupancy reduction impact

•  Partner feedback on speedup less than hoped
•  Identify similar/same application runs to compare

•  UserID+JobName+JobSize+lowTASvariance
•  Compare runtimes, consistency, performance metrics
•  Analysis is complex! Traversed 43 TB, 5 trillion data

points, 19 billion log events
•  Re-enable traditional scheduler for recent comparison

28 Topology Aware Scheduler Report

Example:

29 Topology Aware Scheduler Report

Throughput Evaluation Approaches

•  Within “like” job sets, network injection and
FLOPs can be representative of performance

•  System wide aggregate measures should be
considered over broad time spans if they can vary
substantially by application mix

•  Per project rate comparisons
•  Long periods and recent periods compared

30 Topology Aware Scheduler Report

Similar Application Set Comparisons
Dates	Compared	 From:	Tradi1onal	~6	months			(July	1	2014	-	Jan	13)	

To:						TAS														~10	months	(Jan	15–	Nov	5)	

Representa&on	 92	comparable	job	sets	
16	projects	
29	dis&nct	partners	
228	MNH	of	alloca&on	

App	Run&me	 TAS	improved	by	16%	

App	Run&me	Consistency	(CV)	 TAS	improved	CV	by	63%	

Network	Injec&on	by	app	 TAS	improved	by	19%	weighted	average	by	node*hrs	run	

31 Topology Aware Scheduler Report

System-wide Aggregate Comparisons
Dates	Compared	 From:	Tradi1onal		~6	months			(July	1	2014	-	Jan	13)	

To:							TAS														~6	months			(May	1–	Nov	5)	

System-wide	Network	Injec&on	 TAS	increased	by	42%	
60%	of	projects	showed	increased	rate	
36%	projected	increase	for	weighted	average	by	
alloca&on	size	

Expansion	Factor	
(Job	size	bin	quar&les	by	node*hr	
contribu&on)	

4k+	jobs	increased	by	202%	
864-4k	jobs		increased	by	167%	
128-863	jobs	increased	by	3%	
1-127	jobs	decreased	by	55%	
Overall	average	(by	job	count):	Decrease	of	50%	

Gross	node	occupancy	 12%	less	(9%	raw	difference)	

Break	even	speedup	required	 15%	

32 Topology Aware Scheduler Report

2 week Experiment: Application Comparison
Dates	Compared	 From:						Tradi1onal		(Nov	10	–	Nov	23)	

To:												TAS															(Sep	4	–	Oct	11)	

Representa&on	 68	comparable	job	sets	
13	projects	
19	dis&nct	partners	
267	MNH	of	alloca&on	

App	Run&me	 TAS	improved	by	12%	

App	Run&me	Consistency	(CV)	 TAS	improved	by	7%	

Network	Injec&on	by	app	 3%	increase	weighted	average	by	node*hrs	run	

DP	FLOPs	 0%	increase	weighted	average	by	node*hrs	run	

33 Topology Aware Scheduler Report

2 week Experiment: System-wide Comparison
Dates	Compared	 From:						Tradi1onal		(Nov	10	–	Nov	23)	

To:												TAS															(Sep	4	–	Oct	11)	

System-wide	Network	Injec&on	 41%	of	projects	showed	increased	rate	
27%	projected	increase	for	weighted	average	by	alloca&on	
size	

DP	FLOPs	 35%	of	projects	showed	increased	rate	
26%	increase	for	weighted	average	by	alloca&on	size	

Expansion	Factor	
*	Measured	10/23-11/5	to	maximize	
adjacency	
	

4k+	jobs	increased	by	425%	
864-4k	jobs		increased	by	229%	
128-863	jobs	increased	by	40%	
1-127	jobs	decreased	by	17%	
Overall	Average	(by	job	count):	Decrease	of	11%	

Gross	node	occupancy	 Decreased	by	20%	(14%	raw	difference)	

34 Topology Aware Scheduler Report

Switch to Traditional was silent, but noticed

12/3/15, UserX: “During the last few weeks I am getting significantly lower
benchmarks for my simulations on NAMD even though I am using the same
protocol, same number of nodes (70 nodes), and basically same simulations. Is
there any problem with NAMD or the entire computing nodes? I usually run with
70 nodes and now I am getting 4-7 nanoseconds/day. But before my average
performance for the same number of nodes were 8-12 nanoseconds/day.
Something around 50% reduction in my benchmarks.”

12/1/15, UserY: “We can run without topaware, but it does cost a lot. For the
largest jobs I am doing, the ones names "fpi.XXX.XXX", using topaware gives
and improvement of nearly a factor of two when using a (perhaps somewhat
awkward) 1152 node partition. For our next biggest set of tasks, the jobs names
"run000569...", we get a still very nice 30% speedup. So, as you can imagine, I'm
very eager to get back to using topaware for these jobs.”

35 Topology Aware Scheduler Report

Improvement Opportunities

•  Processes and Policy

•  Preemption and flexible wallclock time (done)
•  Incentives to use backfill and submit with accurate

walltime (done)
•  Explore innovations to use remaining idle nodes
•  Analyze SP/DP FLOPs, vector instructions, filesystem I/O

•  Scheduler algorithm

•  Small job handling improvement expected

•  May permit deeper reservation calculation to improve
large and medium job turnaround time

36 Topology Aware Scheduler Report

Summary
•  System is delivering more science with TAS with more consistent job

runtimes, with an acceptable tradeoff in turnaround time
•  Expansion factors have decreased by 39%, but increased for large jobs

•  Measured Utilization impact given appropriate backlog :
•  DP FLOPs neutral for limited comparisons, but +26% projected
•  Network +42%
•  Node occupancy: -12% (excluding untuned and bug period of Q1)

•  Innovative efforts to improve node occupancy will continue
•  With certain job mixes, TAS has demonstrated very high node occupancy

•  For science delivery comparisons of machines or schedulers, node
occupancy alone is not a sufficient metric

•  We plan continued use of TAS to maximize science output and
“effective system utilization”

37 Topology Aware Scheduler Report

Backup Slides

38 Topology Aware Scheduler Report

System-wide Network Injection
Normalized for Nodes in Use

Weekly variability due to application mix, not node
occupancy

39 Topology Aware Scheduler Report

Tradi&onal	CV=.49	 TAS	CV=.34	

Since variance high
due to application
mix, longer time
periods are
necessary to
compare system-
wide network
injection metric

System-wide FLOPs per Node in Use

40 Topology Aware Scheduler Report

Daily Variability
CV=.33

Incomplete	Data	

Expansion factor: XE

41 Topology Aware Scheduler Report

Expansion factor: XK

42 Topology Aware Scheduler Report

Average XE turnaround time

43 Topology Aware Scheduler Report

Average XK turnaround time

44 Topology Aware Scheduler Report

Equations

Throughput increase % = 100∗(1−​𝑇𝑡/𝑇0 ∗​U0/Ut )
Breakeven speedup: ​𝑇0/𝑇𝑡  must be at least ​𝑈0/𝑈𝑡 
Weighted injection by allocation:

45 Topology Aware Scheduler Report

∑𝑝𝑟𝑜𝑗𝑀↑𝑝𝑟𝑜𝑗𝑁▒​​𝐼↓𝑡𝑎𝑠 /​𝐼↓𝑡𝑟𝑎𝑑  ∗​𝑝𝑟𝑜𝑗_𝑎𝑙𝑙𝑜𝑐/𝑡𝑜𝑡𝑎𝑙_𝑎𝑙𝑙𝑜𝑐  

Expansion Factor Calculation

46 Topology Aware Scheduler Report

Expansion_ factor = wait _ time+ requested _ time
requested _ time

•  Very short jobs have requested_time inflated to
30 minutes.

•  Jobs subjected to fair-share penalties are omitted
•  Jobs submitted before but starting after a system

outage are omitted

Runtime Speedup Calculation

•  Find all combinations of user, job name and job size for one period,
including count, average runtime and standard deviation of that
runtime. We filter for completed jobs that are over 30 minutes and
under 23 hours in order to eliminate stat skewing short jobs as well as
'run-to-termination' 24-hr jobs.

•  Next we find and calculate the same stats for the matching sets in the
other period.

•  Third, we count the comparable job sets and calculate the total node
hours of the matches. We also break this down into sets that showed
a performance improvement with TAS and those that showed a slow-
down, and calculate the node-hours saved and/or lost.

47 Topology Aware Scheduler Report

System-wide FLOPs

48 Topology Aware Scheduler Report

