Innovative *ab initio* symmetry-adapted no-core shell model for advancing fundamental physics and astrophysics

Tomáš Dytrych, Jerry P. Draayer (PI), Kristina D. Launey
Alison Dreyfuss, Robert Baker, David Kekejian, Grigor Sargsyan
Daniel Langr, Tomáš Oberhuber (Czech Tech U, Prague)

William Tang, Bei Wang (Princeton U)

Blue Waters Symposium

June 14, 2016
Nuclear Physics

Nuclear interactions:
- residual strong force
- composite particles, two-, three-, and four-body forces

Potential benefits:
- discover properties of nuclei at the edge of existence
- test fundamental understanding of nature
Application areas

Astrophysics and nucleosynthesis
- X-ray bursts
- r-process

Neutrinos and beyond the standard model physics
Ab initio approach

Interaction

<table>
<thead>
<tr>
<th>LO $\sigma(\bar{r})^2$</th>
<th>XH</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLO $\sigma(\bar{r})^2$</td>
<td>XXH</td>
</tr>
<tr>
<td>NLO $\sigma(\bar{r})^3$</td>
<td>XAX</td>
</tr>
</tbody>
</table>

Model

Observables

realistic nuclear potentials

wave functions and binding energies

reaction rates, cross sections, and densities

2H, 3H, 4He
Solve non-relativistic Schrödinger equation:

\[\hat{H} |\psi_i\rangle = E_i |\psi_i\rangle \]

where \[\hat{H} = \hat{T} + \hat{V}_{NN} + \cdots + \hat{V}_{Coul} \]

1. Choose **physically relevant** model space and construct its basis \{ |\phi_1\rangle, \ldots, |\phi_d\rangle \}

2. Compute Hamiltonian matrix \[H_{ij} = \langle \phi_i |\hat{H}|\phi_j\rangle \]

3. Find lowest-lying eigenvalues and eigenvectors [Lanczos algorithm]
Challenges

Combinatorial growth of Hamiltonian matrix

Limited to light nuclei
Construct many-body basis from physically-intuitive quantities:

- number of HO excitations: N
- total proton, total neutron and total intrinsic spins: $S_p S_n S$
- deformation: SU(3) and (λ μ)
- rotation: SO(3) and L
Computational effort:
- calculate matrix elements (95%)
- solving eigenvalue problem (3%)

Load balancing:

Scalability:
Model space example

$^6\text{Li} : N_{\text{max}} = 12$

$N\hbar\Omega$ space: direct sum of subspaces $[\bullet]$ of states carrying the same $(\lambda \mu)$ and $S_p S_n S$

Dimension: $3.9 \cdot 10^6$
Emerging Patterns

Key features:
- high deformation
- low spin

\[^6\text{Li} : 1^+ \text{gs} \]

Consistent Patterns
Toward medium-mass nuclei

Excitation Spectrum

Binding energy

Nucleon Density

complete space dimension: $4 \cdot 10^{12}$
symmetry-adapted space dimension: $1 \cdot 10^7$
Goal: Improve computation of density matrices with GPUs/MICs

Task details:
- Calculating density matrices requires vector-matrix-vector multiplication.
- Key observation: (large, sparse) matrix is made up of a small set of (small, dense) submatrices

New approach:
- compute only these submatrices, then do vector-submatrix-vector multiplication on-the-fly
- outsource this multiplication to GPU or MIC
Serial implementation: **4 orders of magnitude** faster than legacy code!

OpenMP implementation: **done**

GPU implementation: under development with associated deployment on Blue Waters

Looking forward to continued productive engagement of NSF PAID program to harvest and deliver key advances now and into the future.
Summary

• Collective modes arise naturally from first principles
• Physically-relevant basis provides a useful truncation scheme
• Applications of ab initio theory to medium mass nuclei currently underway
• Accelerated delivery of associated discovery science is expected to be enabled by exciting interdisciplinary computational advances on Blue Waters and future NSF Tier 1 systems.

Ab Initio Toolbox

- Symmetry-Adapted No-Core Shell Model
- No-Core Shell Model
- Quantum Monte Carlo
- Lattice EFT
- Hyperspherical Harmonics method
- Fadeev-Yakubovski
Funding:

- PRAC and PAID program
- NSF PetaApps
- DOE EPSCoR
- Southeastern Universities Research Association (SURA)
- LSU

Acknowledgements:

- Blue Waters
- LSU HPC

LSU3shell code is publically available at http://sourceforge.net/projects/lsu3shell.