Multi-scale Computational Exploration of Two-Dimensional Materials in Nanofluidics and DNA Sequencing

PI: Narayana R. Aluru
Presenter: Yanbin Wu

Department of Mechanical Science and Engineering,
Beckman Institute for Advanced Science and Technology,
University of Illinois
2D Materials in Nanofluidics and DNA Sequencing

DNA base detection using nano-pore

Molybdenum disulfide (MoS_2) mechanosensitive channel

Signal to noise ratio 5 times better than graphene (ACS Nano 2014)

Two distinguishable signals including tension and ionic current (JPCL 2015)

hBN-water interaction using quantum Monte Carlo
hBN based Materials

BNNT is noncytotoxic

- Control
- BNNT
- MWCNT(MER)
- MWCNT(NANOLAB)

Applications in biological probes and biomaterials (Zettl group, Berkeley and Lawrence Berkeley National Lab, JACS 2009)

BNNT is thermally stable

Applications in high-temperature environment (Golberg group, Japan)

hBN has >5 eV band-gap

Applications in nanofluidics and nano medicine.

BNNT for harvesting “blue energy”

Bocquet group, Nature 2013

Blasé group, 1994

Apply the hBN-based materials in nanofluidics and nano medicine.
We Don’t Know How Water Interacts with hBN

Experiments

Challenging due to surface contamination, defects, different fabrication methods

Simulations

Lorentz-Berthelot combinational rule or DFT-D calculation

Contact angle changes with time when exposed to air (Boinovich et al. 2013)
Solve Many-body Schrödinger Equation

Target

\[\hat{H}\psi(X) = E\psi(X) \]

\[\hat{H} = -\frac{\hbar^2}{2m_e} \nabla^2 + V \equiv T + V \]

\[V = -\frac{1}{4\pi\varepsilon_0} \sum_i \sum_j \frac{Z_i e^2}{r_{ij}} + \frac{1}{4\pi\varepsilon_0} \sum_{i<j}^{n} \frac{e^2}{r_{ij}} \]

\[X = (X_1, X_2, \ldots, X_n) \]

Diffuse Monte Carlo (DMC)

Isomorphism between Schrödinger equation and stochastic process

Wavefunction ↔ Distribution of walkers
Kinetic ↔ Diffusion
Potential ↔ birth/death

Verify DMC method

The DMC method is verified and calibrated by comparing to couple cluster method with complete basis set (CBS) for a small system. Qwalk package is used.
Utilizing the Power of Blue Waters

One hBN-water energy point cost 980,000 core hours.

Scaling of Qwalk with number of processors

Our simulation jobs that used to take weeks on other systems can now be done within days or even hours on Blue Waters.
Error Control in DMC

Finite Size Error

Binding energies between a single water molecule and hBN monolayer: 76 ± 6 meV
Finding an Efficient Method Using DMC as Reference

Developing force field parameters needs ΔE for multiple configurations.

DMC is computationally expensive: ~980,000 core hours for one data point.

Use DMC to verify MP2 for one configuration. Then use MP2 to compute interaction energy of other configurations.

For hBN, $\Delta E = -74 \pm 7$ meV
Compared to -76 ± 6 meV by DMC
Develop Parameters by Fitting to MP2 Energies

\[
\Delta E = \sum_{i \in \{N\}} 4\varepsilon_{O-N} \left[\frac{\sigma_{O-N}^{12}}{r_{O-i}^{12}} - \frac{\sigma_{O-N}^{6}}{r_{O-i}^{6}} \right] + \sum_{j \in \{B\}} 4\varepsilon_{O-B} \left[\frac{\sigma_{O-B}^{12}}{r_{O-j}^{12}} - \frac{\sigma_{O-B}^{6}}{r_{O-j}^{6}} \right] + E_{vdWO-H} + E_{ESP}
\]

<table>
<thead>
<tr>
<th>(\sigma_{B-OW}) (Å)</th>
<th>(\varepsilon_{B-OW}) (kcal/mol)</th>
<th>(\sigma_{N-OW}) (Å)</th>
<th>(\varepsilon_{N-OW}) (kcal/mol)</th>
<th>(q_B/q_N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.444</td>
<td>0.1016</td>
<td>3.398</td>
<td>0.1255</td>
<td>±0.30</td>
</tr>
</tbody>
</table>
Simulate Contact Angle using Parameters

Use molecular dynamics simulations with the developed force field parameters

<table>
<thead>
<tr>
<th>$\sigma_{\text{B-O}}$ (Å)</th>
<th>$\epsilon_{\text{B-O}}$ (kcal/mol)</th>
<th>$\sigma_{\text{N-O}}$ (Å)</th>
<th>$\epsilon_{\text{N-O}}$ (kcal/mol)</th>
<th>q_B/q_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.444</td>
<td>0.1016</td>
<td>3.398</td>
<td>0.1255</td>
<td>±0.30</td>
</tr>
</tbody>
</table>

Contact angle: 45 ± 4°

Experiment: Surface with minimum contamination
Apply hBN in nanofluidics

Special Thanks to NSF, Air Forces, and Blue Waters (ILL).

Thank you for your attentions. Questions and suggestions are most welcome.