Protons and Path Integrals
Landmark Simulation of Condensed Phase Proton Transfer

Thomas Allen (PI: Nancy Makri)

Department of Chemistry
University of Illinois

May 13, 2015
Charge transfer reactions are an important class of fundamental chemical reactions.
Charge transfer reactions are an important class of fundamental chemical reactions

\[A + B \rightleftharpoons A^+ + B^- \]

\[AH + B \rightleftharpoons A^- + BH^+ \]
Charge transfer reactions are an important class of fundamental chemical reactions

\[A + B \rightleftharpoons A^+ + B^- \]

\[AH + B \rightleftharpoons A^- + BH^+ \]

These reactions are ubiquitous in biology

Transfer of H, H\(^+\), and H\(^-\) is a major synthetic motif

Cutting-edge materials for energy storage and transport
Proton transfer is a condensed phase process
Proton transfer is a condensed phase process.
Proton transfer is a condensed phase process

Many degrees of freedom, transferring species is quantum mechanical

Separation into interacting system and environment is key
The Proton Transfer Problem

- Proton transfer is a condensed phase process

- Many degrees of freedom, transferring species is quantum mechanical
- Separation into interacting system and environment is key
Fundamental idea of quantum-classical separation has been around for many years.
Quantum-Classical Approaches

- Fundamental idea of quantum-classical separation has been around for many years
 - Quantum Mechanics/Molecular Mechanics
 - Surface Hopping
 - Reduced Models (Spin-Boson, etc.)
Fundamental idea of quantum-classical separation has been around for many years

- Quantum Mechanics/Molecular Mechanics
- Surface Hopping
- Reduced Models (Spin-Boson, etc.)

All of these methods make tradeoffs in rigor or representation

We desire a rigorous method that works across many regimes of behavior
Quantum-Classical Approaches

- Fundamental idea of quantum-classical separation has been around for many years
 - Quantum Mechanics/Molecular Mechanics
 - Surface Hopping
 - Reduced Models (Spin-Boson, etc.)

- All of these methods make tradeoffs in rigor or representation

- We desire a rigorous method that works across many regimes of behavior

- Capturing full system-bath interaction is especially important

- The Quantum-Classical Path Integral formalism is designed to achieve these goals
\[\hat{\rho}_{\text{red}}(s_{N}^{\pm}; N\Delta t) = \int dx_{N}^{\pm} \langle s_{N}^{+}x_{N}^{+} | e^{-i\hat{H}N\Delta t/\hbar} \hat{\rho}(0) e^{i\hat{H}N\Delta t/\hbar} | s_{N}^{-}x_{N}^{-} \rangle \]
\[
\hat{\rho}_{\text{red}}(s_N^{\pm}; N\Delta t) = \int dx_N^{\pm} \langle s_N^{\pm} x_N^{\pm} | e^{-i\hat{H}N\Delta t/\hbar} \hat{\rho}(0)e^{i\hat{H}N\Delta t/\hbar} | s_N^{-} x_N^{-}\rangle
\]

\[
\hat{\rho}_{\text{red}}(s_N^{\pm}; N\Delta t) = \int dx_0 \int dp_0 P(x_0, p_0) Q(s_N^{\pm}, x_0, p_0; N\Delta t)
\]
\[\hat{\rho}_{\text{red}}(s_N^\pm; N\Delta t) = \int dx_N^\pm \langle s_N^+ x_N^+ | e^{-i\hat{H}N\Delta t/\hbar} \hat{\rho}(0) e^{i\hat{H}N\Delta t/\hbar} | s_N^- x_N^- \rangle \]

\[\hat{\rho}_{\text{red}}(s_N^\pm; N\Delta t) = \int dx_0 \int dp_0 P(x_0, p_0) Q(s_N^\pm, x_0, p_0; N\Delta t) \]

Our goal is to extend previous work to treat atomistic systems.

Our goal is to extend previous work to treat atomistic systems

A test system for our method should have several properties

- Simple MD description
- Realistic interactions and energetics
- Rigorous approach is beneficial

Our goal is to extend previous work to treat atomistic systems.

A test system for our method should have several properties:

- Simple MD description
- Realistic interactions and energetics
- Rigorous approach is beneficial

The Azzouz-Borgis model of proton transfer is just such a system.

The Azzouz-Borgis Model

\[\hat{\rho}_{\text{red}}(s^{\pm}_N; N\Delta t) = \int dx_0 \int dp_0 \, P(x_0, p_0) Q(s^{\pm}_N, x_0, p_0; N\Delta t) \]
\[\hat{\rho}_{\text{red}}(s_N^\pm; N\Delta t) = \int dx_0 \int dp_0 \, P(x_0, p_0) \, Q(s_N^\pm, x_0, p_0; N\Delta t) \]

- Huge number of calculations required
- It is possible to parallelize these efficiently
\[\hat{\rho}_{\text{red}}(s^{\pm}_N; N\Delta t) = \int dx_0 \int dp_0 P(x_0, p_0) Q(s^{\pm}_N, x_0, p_0; N\Delta t) \]
QCPI Challenges

\[\hat{\rho}_{\text{red}}(s_{\pm}^N; N\Delta t) = \int dx_0 \int dp_0 P(x_0, p_0) Q(s_{\pm}^N, x_0, p_0; N\Delta t) \]

- Huge number of calculations required
- It is possible to parallelize these efficiently

- Forward-Backward paths must interface with MD
 - BW staff and LAMMPS developers helped incorporate this behavior efficiently
\[\hat{\rho}_{\text{red}}(s_N^{\pm}; N\Delta t) = \int dx_0 \int dp_0 P(x_0, p_0) Q(s_N^{\pm}, x_0, p_0; N\Delta t) \]

- Huge number of calculations required
- It is possible to parallelize these efficiently
- Forward-Backward paths must interface with MD
 - BW staff and LAMMPS developers helped incorporate this behavior efficiently
- Further refinements suggested by BW staff
 - Using memory for file storage
 - Investigating multi-level parallelism
Future Directions

- Complete converged anharmonic calculations
- Investigate bath ensemble properties
- Extending results to complex systems, including proteins and biomolecules
 - Although these systems are larger, their couplings may be more manageable
Acknowledgements

[Image of people enjoying a meal]

[Logos for Blue Waters, NCSA, and NSF]