Huge-Scale Molecular Dynamics
Simulation of Multi-bubble Nuclei

1. Introduction
2. Benchmark results
3. Cavitation
4. Future of HPC
5. Summary and Discussion

May. 15th, 2014@NCSA Blue Waters Symposium
Gas-Liquid Multi-Phase Flow

Multi-Scale and Multi-Physics Problem

Numerical Difficulties
Moving, Annihilation and Creation of Boundary

Hierarchical Modeling
Divide a problem into sub problems
Governing Equations for each scale

Artificial Hierarchy
Validity of Governing Equation

→ Direct Simulation

Movie

Direct Calculation
Introduction (2/2)

Classical Nucleation Theory

Classical nucleation theory (CNT) predicts a nucleation rate of clusters. OK for droplet nuclei, bad for bubble nuclei.

Droplets and Bubbles

Additional work to create a bubble

Interaction between clusters

\[W = \gamma A - V \rho \Delta \mu - V \Delta P \]

Same as Droplet

Work by Bubble

It is difficult to investigate microscopic behavior directly.

Huge scale molecular dynamics simulation to observe interaction between bubbles.
Parallelization (1/3)

Simulation Method

Molecular Dynamics (MD) method with Short-range Interaction

General Approach

MPI: Domain Decomposition
OpenMP: Loop Decomposition

DO I=1,N ← Loop Decomposition here
 DO J in Pair(I) ← or here
 CalcForce(I,J)
 ENDDO
ENDDO

Problems

Conflicts on write back of momenta
→ Prepare temporary buffer to avoid conflicts
→ Do not use Newton’s third law (calculate every force twice)
We have to thread parallelize other parts, such as pair-list construction.
We have to treat SIMDization and thread parallelization simultaneously.
Parallelization (2/3)

Pseudo-flat MPI

Full domain decomposition for both intra- and inner-nodes.

- **Process**
- **Thread**

<table>
<thead>
<tr>
<th>MDUnit</th>
<th>MDUnit</th>
<th>MDUnit</th>
<th>MDUnit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDUnit</td>
<td>MDUnit</td>
<td>MDUnit</td>
<td>MDUnit</td>
</tr>
</tbody>
</table>

MDUnit class:
- Represent an OpenMP thread
- Responsible for calculation

MDManager class:
- Represent an MPI process
- Responsible for communication

DO I=1,THREAD_NUM
CALL MDUnit[i]->Calculate()
ENDDO

Merits

It is straightforward to implement pseudo-flat MPI codes from flat MPI codes. Memory locality is automatically satisfied. (not related to the K computer)

We have to take care SIMDization only at the hot-spot (force calculation).

→ We do not have to take care two kinds of load balance simultaneously.
Demerits

Two-level communication is required.
→ Limitation of MPI call in thread.
→ Data should be packed before being sent by a master thread.

It is troublesome to compute physical quantities such as pressure, and so on.
Algorithms for MD

Pair-list Construction

Grid Search
O(N) method to find interacting particle-pairs

Bookkeeping method
Reuse the pair-list by registering pairs in a length longer than truncation length.

Sorting of Pair-list

Sort by i-particle in order to reduce memory access
Non-use of Newton’s third law

We find that store operations involving indirect addressing is quite expensive for the K computer.

We avoid indirect storing by not using Newton’s third law.
Computations becomes double, but speed up is more than twofold.

The value of FLOPS is meaningless.

Hand-SIMDization

Compiler cannot generate SIMD operations efficiently.

We use intrinsic SIMD instructions explicitly. (emmintrin.h)

Divide instruction (fdivd) cannot be specified as a SIMD instruction.
We use a reciprocal approximation (frcpd) which is fast, but accuracy is only 8bit.
We improve the precision by additional calculations.
The loop is unrolled by four times to enhance the software pipelining.

You can see the source codes from: http://mdacp.sourceforge.net/
Conditions

Truncated Lennard-Jones potential with cutoff length 2.5 (in LJ units)
Initial Condition is FCC and density is 0.5
Integration Scheme: 2nd order symplectic with $dt = 0.001$

0.5 million particles on a CPU-core (4 million particles on a node)
After 150 steps, measure time required for 1000 steps.

Parallelization

Flat MPI: 8 processes /node up to 32768 nodes (4.2 PF)
Hybrid: 8 threads/node up to 82944 nodes (10.6 PF)
Computations assigned to each core are perfectly identical for both scheme.
Nice scaling for the flat MPI (92% efficiency compared with a single node)
Performance of the largest run: 1.76 PFLOPS (16.6%)
Usage of memory is almost flat for hybrid.

We performed product runs using 4096 nodes adopting flat-MPI.
Time Evolution of Multi-bubble nuclei

Equilibrium Liquid → Adiabatic expansion (2.5% on a side) → Multi-bubble nuclei

Ostwald-ripening

Larger bubbles becomes larger, smaller bubbles becomes smaller

Converge to a single bubble
Details of Simulation

Condition

Initial Condition: Pure Liquid
Truncation Length: 3.0
Periodic Boundary Condition:
Time Step: 0.005
Integration: 2^{nd} order Symplectic (NVE)
2^{nd} order RESPA (NVT)

Computational Scale

Resource: 4096 nodes of K computer (0.5PF)
Flat-MPI: 32768 processes
Parallelization: Simple Domain Decomposition
Particles: 400 ~ 700 million particles
System Size: $L = 960$ (in LJ units)
Thermalize: 10,000 steps + Observation: 1,000,000 steps

24 hours / run
1 run ~ 0.1 million node hours
10 samples ~ 1 million node hours
Multi-bubble Nuclei and Ostwald-like Ripening

23 million particles

Initial stage

intermediate stage

Final stage

Multi nuclei

Ostwald-like ripening

One bubble survives

1.5 billion particles

Bubbles appear as the results of particle interactions. Ostwald-like ripening is observed as the results of bubble interactions.

→ Direct simulations of multi-scale and multi-physics phenomena.
Definition of Bubble

Divide a system into small cells.
A cell with density smaller than some threshold is defined to be gas phase.
Identify bubbles on the basis of site-percolation criterion (clustering).

Data Format

A number of particles in a cell is stored as unsigned char (1 Byte).
A system is divided into 32.7 million cells → 32.7 MB / snap shots.
1000 frames/run → 32.7GB/run.
Clustering is performed in post process.
Bubble size distribution at the 10,000th step after the expansion. Accuracy of the smaller run is insufficient for further analysis.

→ We need 1 billion particles to study population dynamics of bubbles which is impossible without Peta-scale computers.
Lifshitz-Slyozov-Wagner (LSW) Theory

Definitions

\[f(v, t) \quad \text{a number of bubbles which has volume } v \text{ at time } t. \]

\[\frac{\partial f}{\partial t} = -\frac{\partial}{\partial v}(\dot{v}f) \quad \text{Governing Equation} \]

\[\dot{v}(v, t) \quad \text{Kinetic Term (Microscopic Dynamics)} \]

Assumptions

- Mean field approximation
- Mechanical equilibrium
- Conservation of the total volume of gas phase
- Self-similarity of the distribution function

\[f(v, t) \sim t^y \tilde{f}(vt^{-x}) \quad \text{shared with the classical nucleation theory} \]

Predictions

Power-law behaviors

\[n(t) \sim t^{-x} \quad \text{The total number of bubbles} \]

\[\bar{v}(t) \sim t^x \quad \text{The average volume of bubbles} \]

The scaling index \(x \) depends on microscopic dynamics.
Simulations Results (1/2)

Number of Bubbles

Average Volume of Bubbles

Slope: $x=1.5$

Power-law behavior in late-stage of time evolution.
Sharing the value of an exponent as predicted by the theory.

The LSW theory works fine.

- Assumptions are valid.

We cannot obtain the scaling region using small systems.

- Huge-scale simulation is necessary.
Simulations Results (2/2)

Scaling exponent changed from 1.5 to 1

![Graph showing reaction and diffusion limits]

Microscopic dynamics can be investigated from macroscopic behavior.

Reaction-Limit
\[\dot{\nu} \propto R^2 \Delta \mu \]
\[x=3/2 \]

Diffusion-Limit
\[\dot{\nu} \propto R^2 J = DR^2 \frac{d\rho}{dr}_{r=R} \]
\[x=1 \]
Summary and Discussion

Summary

We did physics using a peta-scale computer.

Simulations involving billions of particles allows us to investigate multi-scale and multi-physics problems directly.

Toward Exa-scale Computing

Please give us decent programming language!

MPI (library), OpenMP (directive), SIMD (intrinsic functions)

References

MDACP (Molecular Dynamics code for Avogadro Challenge Project)
Source codes are available online: http://mdacp.sourceforge.net/

Acknowledgements

Computational Resources:
“Large-scale HPC Challenge” Project, ITC, Univ. of Tokyo
Institute of Solid State Physics, Univ. of Tokyo
HPCI project (hp130047) on the K computer, AICS, RIKEN

Financial Supports:
CMSI
KAUST GRP (KUK-I1-005-04)
KAKENHI (23740287)