An integrative genome-scale *E. coli* model for Systems and Synthetic biology

Ilias Tagkopoulos

Assistant Professor
Department of Computer Science &
UC Davis Genome Center

University of California, Davis
Relevant projects in our lab

- Multi-scale modeling and HPC simulation
 - Automated CAD tools for Synthetic Biology
 - Decision support tools for agriculture and medicine
Project goal Create an **abstract, multi-scale microbial evolution model** to:

- investigate the **dynamics of microbial evolution** in complex environments
- assess its effect on **microbial organization** across the various biological layers.

 Focus on **general evolutionary principles** and **microbial organization**
EVE: Evolution in Variable Environments
Challenges in modeling microbial evolution

Challenges:
• Balancing **biological realism** and **computational feasibility**
• Different **spatial and temporal scales** across various phenomena (genes, proteins, networks, cells, populations)
• Modeling evolution, inherently **hard to predict**, leads to different cell sizes, growth rates, etc., which translates to **load imbalance**
• **Size does matter**: a bacterial colony may have **billions of cells** and small population size leads to biases (clonal interference, genetic drift)
• **Storage, fast access and visualization** of the **evolutionary fossil record** from replicate simulations.
What have we accomplished

Accomplishments:

• EVE microbial evolution simulator scaling up to **8,000 MPI processes** and **128,000 cells**.
 • To compare: our previous work (run on a Blue Gene machine) scaled up to **200 organisms** and had a less complex underlying model

• Tackling growth and evolution: **static and adaptive load balancing** for both fixed and non-fixed population sizes
 • V. Mozhayskiy, R. Miller, KL. Ma, I. Tagkopoulos, "A Scalable Multi-scale Framework for Parallel Simulation and Visualization of Microbial Evolution", *TeraGrid2011*; Salt Lake City, Utah, 2011 (**Best of Science** and **Best of Show awards**)

• Other extensions: HDF5 storage, AMPI
Load Balancing in simulations of cell populations

![Graph showing load balancing comparison]

- **Time step**
 - Effective computational time before balancing
 - Effective computational time
 - Ideal computational time

- **Global communication & population update phase**

- **Graph details**:
 - **Static load balancer** vs **Dynamic load balancer**
 - ~4x improvement for 4,096 processes

- **Axes**:
 - **X-axis**: Number of MPI processes
 - **Y-axis**: Time sec/epoch
Visualization

- **Visualization** and information flow analysis tools to cluster cells based on phenotype, view hierarchical organization, mutations and evolutionary trajectory.

 - R. Miller, V. Mozhayskiy, I. Tagkopoulos, KL. Ma, "EVEVis: A Multi-Scale Visualization System for Dense Evolutionary Data", *1st IEEE Symposium on Biological Data Visualization*, pp. 143-150, Rhode Island, 2011
Large-scale simulations to explore evolutionary hypotheses

- Used to investigate **Horizontal Gene Transfer** and **evolutionary hypotheses**
The road ahead

A data-driven probabilistic graphical model for microbial evolution (E. coli as a proof-of-concept case)

An integrative genome-scale model for *E. coli*

E. coli Multi-OMICs Dataset

- **Transcriptome**: 4981 genes
- **Proteome**: 4451 proteins
- **Metabolome**: 1136 proteins

- **Expression Levels of Biomolecules**: Strain, Phase, Medium, Carbon, pH, Temperature
- **Phenome**: Genetic Perturbation, Iron Supply
- **Experiments**: Growth, Synthetic Lethality, Essentiality
- **Strain Phase Medium**: Genetic Perturbation, Iron Supply

B

- **Carbon Sources**: Medium supplements
- **Phosphate sources**: Metabolic process
- **Nitrogen sources**: Signal Transduction
- **Oxygen**: Upstream of Signal Transduction
- **Metals**: Evolutionary Consequences Processes
- **Acids**: Upstream of Signal Transduction
SBROME: Synthetic Biology Reusable Optimization Methodology

Genome-scale models in Synthetic Biology

1. Construct 3D model for WT
2. Solvate and equilibrate
3. Collect uncorrelated snapshots from an MD trajectory for WT
4. Mutate snapshots
5. Calculate ΔΔG for the mutant's snapshots (MMPB/SA)

Circuit specification

- Computationally-designed characterized parts
- Component and Module library
- Past characterized circuits

Circuit design and optimization framework

- Parts and topology selection
- Simulation and refinement

Update library with new modules

aTc

GFP

P_{tet}

tetR
Acknowledgements

Lab members:

Postdocs
- Violeta Zorraquino
- Navneet Rai
- Nasos Tsoukalas
- Dina Zhabinskaya
- Javier Carrera (now with Markus Covert, Stanford)
- Vadim Mozhayskiy (now with Life Technologies)

Graduate students
- Linh Huynh
- Minseung Kim
- Runyu Shi
- Matt Meisner
- Beatriz Pereira

Funding

Links
http://tagkopouloslab.ucdavis.edu