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Manipulating particles in microchannels
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to be orthogonal to the primary flow. To better understand the
overall effect of these forces, it is instructive to compare relative
magnitudes at three limiting cases. The ideal condition is where
the Dean drag (FD) is of the same order as the inertial lift (Fz).
Here the positional dependence of the Dean drag magnitude can
lead to concentration of particles in lift-induced equilibrium
positions that interact weakly with the Dean flow (particularly
along the channel midline between counterrotating vortices, SI
Fig. 5). Particles translating in other strongly interacting loca-
tions become unstable. A key point is that the additional force
from Dean flow does not create particle focusing, but it acts in
superposition with the underlying distribution to reduce the
number of equilibrium positions. If FD !! Fz, then no focusing
will be observed as the dominant Dean flow mixes particles, and
if FD "" Fz, then focusing due to inertial lift alone will be
observed for channels of sufficient length. With fc scaling with Rc

n

(n " 0), following Matas et al. (21), the ratio of lift to drag force
magnitudes scale as

Fz

FD
#

1
! ! a

Dh
"3

Rc
n, $n " 0% . [6]

This relation suggests the apparent observation that Dean flow
will become irrelevant for the limit as ! approaches 0 (i.e.,
straight channels), but also suggests a strong third-power de-
pendence on the ratio of particle to channel dimensions. At the
same Rc a smaller particle could remain unfocused, irrespective
of channel length, because of dominant FD, whereas a larger
particle focuses quickly (Fz # FD). Additionally one observes
that the ratio decreases and Dean drag becomes more dominant
with increasing Rc, suggesting an upper limit on Rc above which
all particle sizes will be defocused by mixing due to Dean flow.

Results and Discussion
Inertial Focusing in Rectangular Microchannels. At low flow rates,
particles flowing in straight rectangular microchannels are ob-
served to distribute uniformly across the cross-section of the
channel. As Rp is increased with increasing fluid velocity,
patterns of particle segregation in laminar flow become observ-
able that depend significantly on channel scale and symmetry.
First, we show that uniformly distributed particles in rectangular
channels migrate across streamlines to four symmetric equilib-
rium positions at the centers of the faces of the channel and
toward the channel edge (Fig. 1 b and e and SI Movie 1). Particles
9 $m in diameter suspended in water were observed in 50
$m-wide square channels. The degree of focusing increases with
Rp (Fig. 1b) at a given distance along the channel and also
increases with the distance traveled along the channel. For Rp &
2.9 (Rc & 90), complete focusing is observed after a distance of
' 1 cm. Focusing differs from previous experiments that observe
annuli following the radial symmetry of cylindrical channels.
Here the fourfold channel symmetry reduces focusing to four
coordinates. The equilibrium position for particles is ' 9 $m
from the channel edge for Rc & 90 and agrees with theoretical
predictions of ' 8 $m (20) in an infinite plane system (Rc & 100).
This distance is also predicted to move closer to the wall for a
given particle size as Rc increases, agreeing with our observations
(SI Movie 1). Focusing is experimentally observed at channel
faces as opposed to corners despite the symmetric features of
corners. Presumably the dominant wall effect acts from two
directions on a particle within a corner, and creates an unstable
equilibrium point (Fig. 1 e and f ). Inertial lift forces alone allow
two-dimensional focusing to four precise positions within the
lateral face of a rectangular channel.

Particle Focusing in Curving Microchannels. In curving channel
systems symmetry is reduced by additional inertial (centrifugal)
forces arising from the particles and fluid. These forces act in

superposition with the lift forces to change equilibrium positions
of particles flowing within the fluid. The additional inertial
forces act in the plus and minus y directions in microchannels
with a curving symmetric geometry. This geometry biases the two
stable positions on the sides of the channel and reduces the
number of particles collected at the top and bottom focusing
points. Experimentally, we observe only two focused lines of
particles when the force is sufficient to bias the direction (Fig. 1c,
SI Movie 2). As Rc increases, mixed streams are again observed,
in agreement with an increased contribution from Dean drag
that is predicted by Eq. 6. An asymmetric curving geometry leads
to further reduction in symmetry of particle focusing. In this
case, the net force acts in one direction, biases a single stable
position of the initial distribution (Fig. 1 d and g and SI Movies
3 and 4), and creates a single focused stream of particles.
Interestingly, in asymmetric curved channels complete focusing
occurs for much smaller Rp # 0.15 and shorter traveled distances
(' 3 mm) than in the case of straight rectangular channels (Fig.
1h), which may partly be due to the mixing action of the Dean
flow allowing particles to sample the stable regions of the
flow more quickly.

We studied the effect of relative particle density on focusing in
microchannels. Unexpectedly, when the density of the suspending
solution was changed so that the suspended particles were either
more or less dense than the solution (i.e., positive or negative
buoyancy) focusing was unperturbed and remained at a consistent
location (Fig. 2 a and b). This was further confirmed when particles
both less dense (silicone oil, % & 0.95 g/ml) and more dense
(polystyrene, % & 1.05 g/ml) than the suspending fluid (% & 1.00

Fig. 2. Density independence of inertial focusing. (a) Polystyrene particles
(10-$m diameter, % & 1.05 g/ml) initially unfocused were focused when
suspended in solutions of both higher and lower density (%& 0.78–1.23 g/ml).
The Rp in this system is 0.2. (Scale bar, 50 $m.) (b) A graph showing intensity
cross-sections for these focused streams indicates focusing position is not
affected by relative particle density or sign. a.u., Arbitrary units. (c) Particles
both more dense (polystyrene, %& 1.05 g/ml) and less dense (silicone oil, %&
0.95 g/ml) than the suspending solution focus unexpectedly to the same
streamline. (Scale bar, 100 $m.)
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(w and h being the width and height of the channel). The particle
Reynolds number has an additional dependence on the particle
diameter, a. The definition of Reynolds number based on the
mean channel velocity can be related to Rc by Re ! 2⁄3 Rc.

Inertial lift forces dominate particle behavior when the par-
ticle Reynolds number is of order 1. Typically, particle flow in
microscale channels is dominated by viscous interactions with Rp
"" 1. In these systems, particles are accelerated to the local f luid
velocity because of viscous drag of the fluid over the particle
surface. Dilute suspensions of neutrally buoyant particles are not
observed to migrate across streamlines, resulting in the same
distribution seen at the inlet, along the length, and at the outlet
of a channel. As Rp increases, migration across streamlines has
been observed in macroscale systems (19). In a cylindrical tube
particles were observed to migrate away from the tube center
and walls to form a focused annulus. The theoretical basis for this
‘‘tubular pinch’’ effect was later described to be a combination

of inertial lift forces acting on particles at high particle Reynolds
numbers (21, 22). The dominant forces on rigid particles are the
‘‘wall effect,’’ where an asymmetric wake of a particle near
the wall leads to a lift force away from the wall (23), and the
shear-gradient-induced lift that is directed down the shear
gradient and toward the wall (20). A relation describing the
magnitude of these lift forces (Fz) in a parabolic f low between
two infinite plates follows from Asmolov (20) and is useful in
understanding how the intensity of inertial migration depends on
system parameters with, the caveat that the derivation assumes
Rp " 1.

Fz !
!Um

2 a4

Dh
2 fc(Rc, xc) !

"2

!
Rp

2 fc#Rc, xc). [3]

Here fc(Rc, xc) can be considered a lift coefficient and is a
function that is dependent on the position of the particle within
the cross-section of the channel xc and the channel Reynolds
number, but independent of particle geometry. At the equilib-
rium position, where the wall effect and shear-gradient lift
balance, fc ! 0.

Inertial lift acting on a particle leads to migration away from
the channel center. From Eq. 3 an expression for the particle
migration velocity, Up, can be developed assuming Stokes drag,
Fs ! 3#"aUp, balances this lift force:

Up !
!Um

2 a3

3#"Dh
2 fc(Rc, xc). [4]

An estimate of the transverse migration velocity out from the
channel center line can be made by using an average value of fc
$ 0.5 for flow through parallel plates (20). This calculation yields
a value of 3.5 cm/s for 10-"m particles in a flow with Um ! 1.8
m/s. Traveling a lateral distance of 40 "m requires traveling % 2
mm downstream in the main flow. Eq. 4 also indicates that the
lateral distance traveled will depend heavily on particle diame-
ter, indicating the possibility of separations based on differential
migration. Assumptions that limit the accuracy of this analysis
are given in the supporting information (SI) Text.

Additional interactions between particles and flow have to be
considered when channels are not straight. Secondary rotational
f low caused by inertia of the fluid itself, called Dean flow (24),
has been previously described in curved channels, and can alter
the position of flowing particles. Two dimensionless numbers to
characterize this secondary flow, the Dean number { De !
Re(Dh/2r)1/2] and curvature ratio ($! Dh/2r) can be defined (18,
24), where r is the radius of curvature of the channel. At
moderate Dean numbers observed in our experiments (De " 50),
Dean flow consists of two counterrotating vortices with flow
directed toward the outer bend at the midline of the channel and
inwards at the channel edges. The magnitude of the rotational
f low velocity (UD) scales as

UD$ De2%!Dh. [5]

In the presence of other forces (e.g., inertial lift forces) that act
to keep a particle in a stationary position, a drag force is applied
by the secondary flow with a maximum possible value that is
proportional to the secondary flow velocity. From Eq. 5 and
assuming Stokes drag, the drag attributable to Dean flow (Dean
drag, FD) scales as FD $ !Um

2 aDh
2r& 1.

The balance between inertial lift and Dean drag forces is what
determines the preferred location of particles in channels with
curved geometry. It should be noted that although lift and drag
forces in a simple flow act orthogonally on a body, inertial lift and
Dean drag forces may not. This is because inertial lift acts in a
perpendicular direction to the primary channel f low, whereas
Dean drag is in the direction of the secondary flow, leading both

Fig. 1. Inertial self-ordering. (a) Schematic drawing of the inertial ordering
process. After flowing through a channel of a particular symmetry, precise
ordering of initially scattered particles is observed both longitudinally along
the direction of flow and laterally across the channel. (b ) Top-down views of
fluorescent streak images of flowing 9-"m-diameter particles in a square
channel (50 "m) filled with water (density ! ! 1.00 g/ml and dynamic viscosity
" ! 10& 3 Pa!s). Flow is from left to right. The inlet region is shown at the left,
where the particles are initially uniformly distributed within the fluid. Longer
images show the outlet 3 cm downstream for the channel Reynolds number
R c ! 15, 30, or 90 (particle Reynolds number Rp ! 0.48, 0.97, or 2.9). Focusing
of particles into four single streamlines is observed. From above this appears
as three lines with double the intensity in the middle streak–line. (c) For a
symmetric curving channel the symmetry of the system reduces focusing to
two streams. Above a critical Dean number (De) focusing is perturbed. (d ) For
an asymmetric curving system, focusing down to a single stream is favored.
Focusing is again more complex as De increases. (e) A confocal cross-section of
the rectangular channel shown in b shows focusing of particles to the four
channel faces. (Scale bar, 10 "m.) ( f) Schematic diagram showing the force
balance between the shear-gradient (Fshear, red arrows) and wall-induced lift
(Fwall, blue arrows) for particles in three positions. (g ) Confocal cross-section
for an asymmetric channel. (h ) Starting at the inlet on the left, a random inlet
distribution of fluorescent microparticles is focused to a tight streamline on
the right after a short distance. (Scale bar, 160 "m.)
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to be orthogonal to the primary flow. To better understand the
overall effect of these forces, it is instructive to compare relative
magnitudes at three limiting cases. The ideal condition is where
the Dean drag (FD) is of the same order as the inertial lift (Fz).
Here the positional dependence of the Dean drag magnitude can
lead to concentration of particles in lift-induced equilibrium
positions that interact weakly with the Dean flow (particularly
along the channel midline between counterrotating vortices, SI
Fig. 5). Particles translating in other strongly interacting loca-
tions become unstable. A key point is that the additional force
from Dean flow does not create particle focusing, but it acts in
superposition with the underlying distribution to reduce the
number of equilibrium positions. If FD !! Fz, then no focusing
will be observed as the dominant Dean flow mixes particles, and
if FD "" Fz, then focusing due to inertial lift alone will be
observed for channels of sufficient length. With fc scaling with Rc

n

(n " 0), following Matas et al. (21), the ratio of lift to drag force
magnitudes scale as

Fz

FD
#

1
! ! a

Dh
"3

Rc
n, $n " 0% . [6]

This relation suggests the apparent observation that Dean flow
will become irrelevant for the limit as ! approaches 0 (i.e.,
straight channels), but also suggests a strong third-power de-
pendence on the ratio of particle to channel dimensions. At the
same Rc a smaller particle could remain unfocused, irrespective
of channel length, because of dominant FD, whereas a larger
particle focuses quickly (Fz # FD). Additionally one observes
that the ratio decreases and Dean drag becomes more dominant
with increasing Rc, suggesting an upper limit on Rc above which
all particle sizes will be defocused by mixing due to Dean flow.

Results and Discussion
Inertial Focusing in Rectangular Microchannels. At low flow rates,
particles flowing in straight rectangular microchannels are ob-
served to distribute uniformly across the cross-section of the
channel. As Rp is increased with increasing fluid velocity,
patterns of particle segregation in laminar flow become observ-
able that depend significantly on channel scale and symmetry.
First, we show that uniformly distributed particles in rectangular
channels migrate across streamlines to four symmetric equilib-
rium positions at the centers of the faces of the channel and
toward the channel edge (Fig. 1 b and e and SI Movie 1). Particles
9 $m in diameter suspended in water were observed in 50
$m-wide square channels. The degree of focusing increases with
Rp (Fig. 1b) at a given distance along the channel and also
increases with the distance traveled along the channel. For Rp &
2.9 (Rc & 90), complete focusing is observed after a distance of
' 1 cm. Focusing differs from previous experiments that observe
annuli following the radial symmetry of cylindrical channels.
Here the fourfold channel symmetry reduces focusing to four
coordinates. The equilibrium position for particles is ' 9 $m
from the channel edge for Rc & 90 and agrees with theoretical
predictions of ' 8 $m (20) in an infinite plane system (Rc & 100).
This distance is also predicted to move closer to the wall for a
given particle size as Rc increases, agreeing with our observations
(SI Movie 1). Focusing is experimentally observed at channel
faces as opposed to corners despite the symmetric features of
corners. Presumably the dominant wall effect acts from two
directions on a particle within a corner, and creates an unstable
equilibrium point (Fig. 1 e and f ). Inertial lift forces alone allow
two-dimensional focusing to four precise positions within the
lateral face of a rectangular channel.

Particle Focusing in Curving Microchannels. In curving channel
systems symmetry is reduced by additional inertial (centrifugal)
forces arising from the particles and fluid. These forces act in

superposition with the lift forces to change equilibrium positions
of particles flowing within the fluid. The additional inertial
forces act in the plus and minus y directions in microchannels
with a curving symmetric geometry. This geometry biases the two
stable positions on the sides of the channel and reduces the
number of particles collected at the top and bottom focusing
points. Experimentally, we observe only two focused lines of
particles when the force is sufficient to bias the direction (Fig. 1c,
SI Movie 2). As Rc increases, mixed streams are again observed,
in agreement with an increased contribution from Dean drag
that is predicted by Eq. 6. An asymmetric curving geometry leads
to further reduction in symmetry of particle focusing. In this
case, the net force acts in one direction, biases a single stable
position of the initial distribution (Fig. 1 d and g and SI Movies
3 and 4), and creates a single focused stream of particles.
Interestingly, in asymmetric curved channels complete focusing
occurs for much smaller Rp # 0.15 and shorter traveled distances
(' 3 mm) than in the case of straight rectangular channels (Fig.
1h), which may partly be due to the mixing action of the Dean
flow allowing particles to sample the stable regions of the
flow more quickly.

We studied the effect of relative particle density on focusing in
microchannels. Unexpectedly, when the density of the suspending
solution was changed so that the suspended particles were either
more or less dense than the solution (i.e., positive or negative
buoyancy) focusing was unperturbed and remained at a consistent
location (Fig. 2 a and b). This was further confirmed when particles
both less dense (silicone oil, % & 0.95 g/ml) and more dense
(polystyrene, % & 1.05 g/ml) than the suspending fluid (% & 1.00

Fig. 2. Density independence of inertial focusing. (a) Polystyrene particles
(10-$m diameter, % & 1.05 g/ml) initially unfocused were focused when
suspended in solutions of both higher and lower density (%& 0.78–1.23 g/ml).
The Rp in this system is 0.2. (Scale bar, 50 $m.) (b) A graph showing intensity
cross-sections for these focused streams indicates focusing position is not
affected by relative particle density or sign. a.u., Arbitrary units. (c) Particles
both more dense (polystyrene, %& 1.05 g/ml) and less dense (silicone oil, %&
0.95 g/ml) than the suspending solution focus unexpectedly to the same
streamline. (Scale bar, 100 $m.)
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Addition of a viscoelastic component induces migration in Poiseuille flow

flow

What happens when the 
particles become “small”?

4.2 Experimental results - theory validation

The centerline attraction is demonstrated by use of the PVP

solution. We vary the applied pressure drop Dp from 0.1 to 6 bar,

corresponding to measured flow rates Q ranging from about

0.0075 to 0.75 ml min!1. These flow rates give a Deborah number

varying from 0.004 to 0.4. Notice that, at the highest flow rate, we

estimate a Reynolds number of order of magnitude 10!3,

assuring that inertial effects are in fact irrelevant. For Dp< 2 bar,

we do not observe particle alignment within the length of the

channel. The situation changes as Dp is increased. For Dp ¼ 2

bar, corresponding to Qy 0.15 ml min!1 and Dey 0.06, we find

that the particle radial distribution strongly depends on the

distance from the inlet Lz. This is shown in Fig. 4 where we report

snapshots of particle positions at three different distances from

the inlet (the corresponding movies are available as Supple-

mentaryMaterial†). At 2.5 cm from the inlet (Lz/R¼ 104) we find

that the particles are still randomly distributed along the radial

direction, as shown in Fig. 4a. However, at 3.5 cm from the inlet

(Lz/R ¼ 1.4 # 104), the particles are already confined within

a narrow band around the channel centerline, as reported in

Fig. 4b. Finally, at 4.5 cm from the inlet (Lz/R ¼ 1.8 # 104), we

observe strict particle focusing along the central streamline, see

Fig. 4c.

To validate the numerical predictions, we compare the

experimental particle radial distributions with the simulated ones

obtained in the same conditions. The experimental radial distri-

butions of the particles are calculated starting from the velocities

of the particles along the flow direction. After measuring the

horizontal particle velocities VT and assuming a parabolic flow

profile within the channel cross-section (an assumption justified

by the constancy of the viscosity of the PVP solution), we

calculate the particle radial position r as:

r ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1! VTðrÞ
VT;max

s

(7)

where VT,max is the velocity of a particle flowing in the center of

the channel. We measure VT,max from the velocities of the

particles far away from the inlet, i.e. Lz$ 5 cm. Indeed, as shown

in Fig. 4, at those distances all the particles move along the

channel centerline. Notice that, in writing eqn (7), we assume that

the particle moves at the same local velocity as the fluid. For the

blockage ratio considered here, this approximation introduces an

error lower than 0.5%.24

To calculate the fraction of particles in a certain band at

a distance r from the center, we subdivide the cross-section of the

tube in an inner circle of radius r ¼ 2a (denoted by an index k ¼
1) and in concentric annular rings with thickness Dr ¼ 2a

(denoted progressively by indices k ¼ 2,3,. moving from the

center towards the channel wall). The normalized fraction fk(Lz)

of particles in the radial band k is then calculated as:

fk ðLzÞ ¼

nk ðLzÞ
Ak vk

P
k

nk ðLzÞ
Ak vk

(8)

where nk(Lz) is the number of particles flowing in the band k at

a fixed distance Lz from the inlet, and Ak and !vk are the cross-

sectional area and the average velocity of the band k, respec-

tively. Such a definition is dictated by the fact that: i) along the

radial direction, bands with the same thickness Dr have different
areas Ak, meaning that a higher number of particles is expected

for bands at larger radial distances, ii) the average velocity of

each band decreases as r increases. As, for a uniform particle

distribution measured within a finite time of observation, the

frequency of faster particles is higher than that of slower parti-

cles, eqn (8) embodies the necessary correction, by dividing nk by

the velocity of the band k.

We measure fk(Lz) for distances Lz from the inlet varying from

2.5 cm to 5.0 cm. The index k ranges from 1 to 3 since, even for

Lz ¼ 2.5 cm, we do not observe particles flowing between the

external band (k ¼ 3) and the cylinder wall. At each distance

from the channel inlet we take a minimum of 5 different movies

each of 1 s. Since in each movie we find about 15–20 particles, our

statistic at each distance from the inlet is based over about 100

particles.

The observed distributions are now compared to simulation

results generated with a Giesekus fluid with a ¼ 0, to mimic the

shear rheology of the suspending PVP solution. The relaxation

time is chosen as l ¼ 2.3 # 10!3 s, as reported in section 4.1 and

in Yang et al.,10 and the blockage ratio is set to b¼ 0.08 as in the

experiments.

The calculated distributions are obtained by repeatedly

running single particle simulations (in view of the low particle-

loading in the experiments), and assuming radial uniformity of

the particle initial positions. More specifically, we use the

following procedure: 1) we find the two trajectories passing

through the internal and external boundaries of a band k (for k¼
1 we only need the external boundary); 2) we determine the initial

radial positions rk,in and rk,out of such trajectories; 3) the

normalized fraction fk(Lz) is calculated as: fk(Lz)¼ (r2k,out! r2k,in)/

R2. Of course, for k ¼ 1, r1,in ¼ 0.

Fig. 5 shows the comparison of the calculated (bars) and the

experimentally measured (symbols) distribution function of

particles at different axial positions along the pipe. A progressive

crowding around the pipe centerline is apparent, and a complete

3D focusing is eventually achieved within a few centimeters.

Fig. 4 Experimental particle distribution in a straight cylindrical

micropipe at different distances from the inlet with water solution at 8%

PVP. The applied pressure drop is Dp ¼ 2 bar, corresponding to a flow

rateQ¼ 0.15 ml min!1 and a Deborah numberDey 0.06. At 2.5 cm from

the inlet (a) no alignment is observed and the particles are still randomly

distributed. At a distance of 3.5 cm from the inlet (b) the particles are

confined within a narrow band around the centerline. At 4.5 cm from the

inlet (c) 3D focusing on a line is achieved.

1642 | Lab Chip, 2012, 12, 1638–1645 This journal is ª The Royal Society of Chemistry 2012
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Prohm et al., Eur. Phys. J. E 35, 80 (2012).
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of its maximum, then

b = r+1/2 − r−1/2. (10)

2.5 Measuring forces and velocities

In sect. 3.2 we will interpret the radial distribution func-
tion P (r) in terms of a lift force flift in radial direction
and also look at the colloids axial velocity v̄z as a func-
tion of r. The distribution functions reported in sect. 3.1
are peaked at a radial position meaning that the colloid
rarely visits other radial positions. To determine flift(r)
and v̄z(r) by averaging over a sufficient number of sam-
ple values, we constrain the colloid to a fixed radial and
azimuthal position r,φ by simply disregarding any mo-
tion in radial and azimuthal direction. The colloid freely
moves along the channel or z axis and is not constrained in
its rotation. The axial velocity is then simply the average
v̄z = ⟨vz⟩ = ⟨∆z/∆tc⟩. To measure the lift force, we record
the momentum transfer on the colloid in radial direction
during streaming and collision step: flift = ⟨∆pr/∆tc⟩.

Since MPCD includes thermal fluctuations, we deter-
mine the mean values by averaging over ca. (2–5) × 105

time steps for each simulation run and, in addition, av-
erage over Nsim ≥ 5 independent simulation runs; for
a/R = 0.2 we choose Nsim ≥ 7. Each simulation run took
ca. 160 hours on several CPUs. For Re = 40, the number
of simulated time steps was approximately halved com-
pared to Re < 40 since the total number of fluid particles
doubled due to the reduced cell size (see table 1).

To estimate the standard error of the mean values, we
calculate the time averages f̂lift,i and v̂z,i for each indepen-
dent simulation run once the colloid has reached its steady
state. The standard error of the lift force then follows from
the square root of the variance [40]:

σ2
fLift

=
1

Nsim − 1

Nsim∑

i=1

(
f̂lift,i − flift

)2
. (11)

The standard error of the axial velocity is estimated in
the same way.

3 Results

3.1 Probability distributions

In the limit of zero Reynolds number and zero thermal
noise, a colloid in Poiseuille flow does not cross stream-
lines [3]. It moves with the imposed external flow but is
slowed down by drag forces due to its finite extent. How-
ever, due to thermal motion the colloid diffuses in radial
direction across streamlines and ultimately its radial prob-
ability distribution P (r) becomes uniform. For increasing
Reynolds number, when inertial forces are no longer negli-
gible, the shape of P (r) changes. Figure 5 shows the cross-
sectional positions of the colloid at different times and for
several independent simulation runs. Clearly, the proba-
bility distribution is nonuniform and shows the hallmark

Fig. 5. Illustration of the full probability distribution P (r, φ)
by plotting the colloid’s radial and angular positions at dif-
ferent times. Top row: Re = 20, bottom row: Re = 40. Left
column: a/R = 0.2, right column a/R = 0.5.

of inertial focusing: the Segré-Silberberg annulus [1]. We
observe that for increasing Re and colloid radius a/R the
annulus becomes narrower.

To analyze the properties of the annulus in more de-
tail, we construct the radial distribution function P (r)
from simulated data using the method of kernel density
estimate as described in sect. 2.4. In fig. 6, we plot P (r)
for increasing Reynolds number Re at constant colloid ra-
dius a/R (a) and for increasing a/R when Re is fixed (b)1.
With increasing Reynolds number, the distribution be-
comes narrower and the Segré-Silberberg annulus is more
pronounced. At the same time, the maximum of the dis-
tribution shifts closer to the wall. However, for increasing
colloid size (fig. 6(b)), the maximum moves towards the
center. This is expected since larger colloids have to be
farther away from the channel walls due to their larger
excluded volume but also due to larger hydrodynamic in-
teractions with the wall. In addition, the distribution be-
comes narrower for increasing a/R in accordance with the
cross-sectional distributions illustrated in fig. 5. The shift
of the peak with increasing colloid size might be inter-
esting for particle sorting with inertial microfluidics. We
summarize the two main characteristics of the distribution

1 In our simulations the kinematic viscosity ν at Re = 40 is
different from the viscosity at the other Reynolds numbers (see
table 1). As a result the force scale for the lift force, f̂ = ρν2,
introduced in sect. 3.2 differs. In sect. 3.3 we show how the
Boltzmann distributions for the potential of the radial lift force
reproduce the radial distribution functions. This justifies the
following procedure. To compare the distributions at Re = 40
to the distributions at other Re values, we renormalize them

by P (r)f̂/f̂40 , where f̂40 and f̂ are the respective force scales
for Re = 40 and the other Reynolds numbers.

Brownian motion Comparable length scales

Kim et al., Lab Chip 12, 2807 (2012).

PEO Re ~ 300 nm

〈Fx〉 > 0

〈Fx〉 < 0
〈Fx〉 = 0

Average force on particles〈Fx〉gives average direction of movement



Mesoscale modeling
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Coarse-grained models
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bond 
stretch

dispersion forces, excluded 
volume, electrostatics

angle bend

dihedral twist



9What happens if the particles are droplets or cells that deform?

A. Nikoubashman et al., J. Chem. Phys. 140 094903 (2014).
M.P. Howard et al., J. Chem. Phys. 142, 224908 (2015).



Droplet migration
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F = FC + FR + FD

repulsive
force

random
force

drag
force



Why Blue Waters
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Large parametric design space

4 polymers
x 3 polymer concentrations

x 5 flow rates
x 5 replicas

Large coarse-grained model

384,000 particles
= 4 GPUs for 48 hours

(HOOMD-blue)

Blue Waters is the only system available to us with
the GPU resources needed!



Droplet in a neat solvent is different from a rigid particle

12M.P. Howard et al., Soft Matter 15, 3168 (2019).
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Droplet shape depends on the local flow

13

0.0

0.2

0.4

0.6

⟨D
⟩

fx [ε/d]

(a)

0.001
0.002
0.003
0.004
0.005

0.0 0.1 0.2 0.3

Ca

20

30

40

⟨θ
⟩
[◦
]

(b)

L

B

D =
L�B

L+B
<latexit sha1_base64="ZFeXCJkpmc0L/fmmZSvzcO2cZU8=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSIIYklU0I1QqgsXXVSwD2hDmUwn7dDJg5mJEEL8FTcuFHHrh7jzb5y2WWjrgQuHc+7l3nvciDOpLOvbWFpeWV1bL2wUN7e2d3bNvf2WDGNBaJOEPBQdF0vKWUCbiilOO5Gg2Hc5bbvjm4nffqRCsjB4UElEHR8PA+YxgpWW+mbpFl2jnicwSeuntSytn9Syvlm2KtYUaJHYOSlDjkbf/OoNQhL7NFCEYym7thUpJ8VCMcJpVuzFkkaYjPGQdjUNsE+lk06Pz9CRVgbIC4WuQKGp+nsixb6Uie/qTh+rkZz3JuJ/XjdW3pWTsiCKFQ3IbJEXc6RCNEkCDZigRPFEE0wE07ciMsI6CaXzKuoQ7PmXF0nrrGKfV6z7i3K1lsdRgAM4hGOw4RKqcAcNaAKBBJ7hFd6MJ+PFeDc+Zq1LRj5Tgj8wPn8AupiTiA==</latexit>

𝜃

M.P. Howard et al., Soft Matter 15, 3168 (2019).
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Flow and droplet position depend on polymer concentration
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Solution is non-Newtonian for higher 
polymer concentrations.

Droplet moves inward with increasing 
polymer concentration.

0.0 0.2 0.4 0.6 0.8 1.0

|zc|/H

0

2

4

6

8

pr
ob

ab
ili
ty

no polymer
φp = 2.5%

φp = 5.0%
φp = 7.5%

φp = 10.0%

0.5 0.7 0.9
0

1

2

wallcenter
M.P. Howard et al., Soft Matter 15, 3168 (2019).

0.0

0.5

1.0

1.5
u
x
[d
/τ

]
(a)

no polymer
M = 10

M = 20

M = 40

M = 80

−1.0 −0.5 0.0 0.5 1.0

z/H

0.0

0.5

1.0

1.5

u
x
[d
/τ

]

(b)

no polymer
φp = 2.5%
φp = 5.0%

φp = 7.5%
φp = 10.0%

⌧ ⇠
✓
@ux

@z

◆n

<latexit sha1_base64="MhFg8rnhmrAZlipHUD0ju739lvs=">AAACIXicbVDLSgMxFM34rPVVdekmWIS6KTMq2GXRjcsK9gGdsWTSTBuaeZDcEeswv+LGX3HjQpHuxJ8x0w6orRcCJ+fcc5N73EhwBab5aSwtr6yurRc2iptb2zu7pb39lgpjSVmThiKUHZcoJnjAmsBBsE4kGfFdwdru6CrT2/dMKh4GtzCOmOOTQcA9Tgloqleq2UBibCvuY1swDyq2JwlN7IhI4ETguPeQ/tweU1vywRBO7rS1bFbNaeFFYOWgjPJq9EoTux/S2GcBUEGU6lpmBE6STaaCpUU7ViwidEQGrKthQHymnGS6YYqPNdPHXij1CQBP2d+OhPhKjX1Xd/oEhmpey8j/tG4MXs1JeBDFwAI6e8iLBYYQZ3HhPpeMghhrQKjk+q+YDomOCHSoRR2CNb/yImidVq2zqnlzXq5f5nEU0CE6QhVkoQtUR9eogZqIoif0gt7Qu/FsvBofxmTWumTkngP0p4yvb8hJpIY=</latexit>



Conclusions
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All software has been released open source on GitHub: mphoward/azplugins

Polymer solutions can be used to 
manipulate droplets in microchannels.

Droplet position and shape depend on 
the polymer solution and flow.

M.P. Howard et al., Soft Matter 15, 3168 (2019).

Important for applications like 
membrane filtration or cell sorting.


