Python Best Practices in HPC

Roland Haas (NCSA)
Email: rhaas@illinois.edu
Why use Python in HPC?

- everybody else is already using it
 - including your students, whether you like it or not...
 - large body of documentation available on the web

- Python's design principles:
 - Beautiful is better than ugly.
 - Explicit is better than implicit.
 - Simple is better than complex.
 - Readability counts.

make for code well suited to scientific projects

- Python was originally designed to be usable as a glue language
 - highly extensible
 - can bind to many compiled languages: C, C++, Fortran
Pros and cons of using Python in your science project

- **Very low learning curve**
 - for you
 - for your students
- **Quick turnaround while developing**
- **Fully open source**
 - no licensing costs
 - encourages sharing code
- **Large number of scientific packages:**
 - numpy, scipy
 - PyTrilinos, petsc4py, Elemental, SLEPc
 - mpi4py, h5py, netcdf

- **Very low learning curve**
 - low quality code possible
- **Not initially designed for HPC**
 - most developers aren't scientists
 - Python itself is not very fast
- **Large startup costs, hard on cluster IO subsystem**
- **Not always backwards compatible, even between minor versions**
- **Duck-typing makes code validation hard, errors only detected at runtime**
Usage cases of Python for HPC by task

- preparing your input deck
 - create input files based on physical parameters
 - create directory structures
 - submit simulations
 - mostly string handling and scripting

- process simulation results
 - combine data from checkpoints
 - interactively explore data
 - distill scientific results from data
 - produce plots and other representation of results
 - mostly serial but possible bag-of-task parallelism

- orchestrate simulations
 - set up data for multi-stage simulations
 - check success of each step
 - start MPI parallel simulation code

- glue code in simulation binary
 - Python handles simulation infrastructure tasks
 - most lines of code are Python
 - most execution time is in compiled code

- Python for science code
 - no custom compiled code
 - Python code or public packages do actual science calculations
Python startup time issues

- Python startup and the `import` statement are very metadata intensive

  ```
  python3 -c 'import numpy'
  ```

- has 1600 `open` & `stat` calls
 - per MPI rank, hitting a single metadata server
- e.g. a 1ms response time, 1024 ranks → 1,600s startup time
 - makes shared file system slow for every user on the system

- solved in BWPY for provided modules
- for you own modules
 - install to `/dev/shm/$USER` on login node
 - tar up `/dev/shm/$USER`
 - extract tarball to `/dev/shm/$USER` on compute nodes, put first in `$PYTHONPATH`

60 modules – Lustre, 1 rank per node

60 modules – bwpy, 1 rank per node

10x faster
Workflows in python

- for simple bag-of-tasks workflows, use mpi4py's MPICommExecutor (see BWPY presentation)
 - do not use 1000 aprun -n1 python

- Python workflows in Blue Waters webinars series:
 - Parsl, modern, pure python, standalone
 - Pegasus, very mature, builds on HTCondor

- IO challenge
 - no file system likes millions of tiny files. Lustre is no exception
 - store temporary files in /dev/shm on compute nodes
 - pre-stage files in the background using Globus, has a python interface

```python
from mpi4py import MPI
from mpi4py.futures import MPICommExecutor

def sqr(x): return x**2
data = range(21)
with MPICommExecutor(root=0) as executor:
    if executor is not None:
        squared = executor.map(sqr, data)
        print(squared)
```

```python
from parsl import App, DataFlowKernel
import parsl.configs.local as lc
dfk = DataFlowKernel(lc.localThreads)

@App('python', dfk)
def sqr(x): return x**2
data = range(21)
squared = map(sqr, data)
print([i.result() for i in squared])
```
Numerical computations using python

- **numpy** the de-facto standard way to handle numerical arrays in python
 - N-dimensional arrays of integer, real and complex numbers
 - linear algebra (BLAS, LAPACK), FFT, random numbers
 - linkages to C/C++/Fortran

- **scipy** provides higher level functions
 - optimization
 - integration
 - interpolation
 - signal and image processing
 - ODE solvers

- **both numpy and scipy** leverage BLAS, LAPACK, FFT, FITPACK
 - sub-optimal performance if those are incorrectly build
 - BWPY does “the right thing”
 - pip does not (usually)

- **PyTrilinos, petsc4py, Elemental, SLEPc** build on these

```python
import numpy as np
A = np.random.random((1000,1000))
b = np.random.random((1000,))
c = A*b
```

<table>
<thead>
<tr>
<th>Method</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>pip</td>
<td>0.02s</td>
</tr>
<tr>
<td>BWPY</td>
<td>0.004s</td>
</tr>
</tbody>
</table>

5x faster
Computing in python code

• How CPython works
 - compile script to bytecode
 - execute one line of byte code after the other

• CPython is designed for maintainability, not speed
 - no look ahead
 - no parallelism (threads, vectorization)
 - hard to change this due to duck typing

• Alternatives
 - pypy
 - numba
 - Cython

• Not all are equally well suited for all tasks
 - pypy does not deal well with numpy

```python
import numpy as np
a = np.zeros(10000)
for i in range(10000):
a[i] = np.sqrt(i)
```

is 2x slower in pypy than CPython (uses numpy-pypy)

```python
a = list()
for i in range(1000):
a.append(str(i))
```

is 10x faster in pypy than CPython
Numba and Cython

- Numba is a just-in-time compiler for numerical operations in CPython
 - needs (simple) annotations
 - deals well with `numpy`

```python
import numpy as np
from numba import jit

@jit
def my_sqrt():
    a = np.zeros(10000)
    for i in range(10000):
        a[i] = np.sqrt(i)
```

12x faster than plain CPython

- Cython compiles python-like code to C, designed to link C extensions to python
 - load result as module
 - do threading and parallelization in C code

```python
from libc.math cimport sqrt
def my_sqrt():
cdef int i
cdef double a[10000]
    for i in range(10000):
        a[i] = sqrt(i)
```

481x faster than plain CPython
Calling compiled code (the easy way)

- numpy has convenience code to link to Fortran code
 - very easy to use (much easier than C)

```fortran
SUBROUTINE FIB(A,N)
INTEGER N
REAL*8 A(N)
DO I=1,N
  IF (I.EQ.1) THEN
    A(I) = 0.0D0
  ELSEIF (I.EQ.2) THEN
    A(I) = 1.0D0
  ELSE
    A(I) = A(I-1) + A(I-2)
  ENDIF
ENDDO
END SUBROUTINE
```

```bash
$ python -m numpy.f2py -m myfib -c fib.f90
```

```python
import numpy
import myfib
a = numpy.zeros(8, 'float64')
myfib.fib(a)
print(a)
```

For C code, you may even want to write a Fortran wrapper

from http://scipy-lectures.org
More on using compiled modules

- Cython:
 https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id13

- f2py (very easy!):
 https://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html#f2py

- SWIG: http://swig.org/Doc1.3/Python.html

- Boost – interferes with HDF5 on BW

- Ctypes:
 https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id6

- Numpy bindings in C/C++: https://dfm.io/posts/python-c-extensions/
Code profiling

- Profile your code to find out where it spends most time. Assuming that it must be your innermost loop is dangerous...

- Object code profilers like CrayPat profile the python interpreter, but not your python code.

- Python comes with a built in profiler in the `cProfile` module.

 - Included in BWPy
 - Default is function level granularity
 - Add extra profiling modules and analysis tools in a virtualenv

- Can be as simple as:
  ```python
  python -m cProfile loop.py
  ```

- Output profile using `-o` switch for in depth analysis
  ```python
  p = pstats.Stats('prof.dat').
  p.sort_stats('cumulative').
  print_stats(5)
  ```

- Install `line_profiler` for line-by-line usage
  ```python
  annotate functions to profile using @profile
  run kernprof -l script.py
  ```
Code profiling example

```bash
$ python -m cProfile loop.py
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
1    0.019    0.019    0.477    0.477 test-profile.py:1(<module>)
1    0.334    0.334    0.457    0.457 test-profile.py:1(loop)
1    0.000    0.000    0.477    0.477 {built-in method builtins.exec}
1000000    0.124    0.000    0.124    0.000 {method 'append' of 'list' objects}
1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profil...
```

```python
@profile
def loop():
    a = []
    for i in range(1000000):
        a.append(i)
```

```bash
$ virtualenv --system-site-packages $PWD
$ pip install line_profiler
$ kernprof -l loop.py
$ python -m line_profiler loop.py.lprof
Line #      Hits         Time  Per Hit   % Time  Line Contents
1                                           @profile
2                                           def loop():
3         1          5.0      5.0      0.0    a = []
4   1000001     957889.0      1.0     44.3    for i in range(1000000):
5   1000000    1206173.0      1.2     55.7      a.append(i)
```
Questions?

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.
References and extra material

- This presentation is heavily based on William Scullin's presentations: https://www.alcf.anl.gov/files/Scullin-Pavlyk(SDL2018_Python.pdf
- https://bluewaters.ncsa.illinois.edu/webinars/workflows
- https://bluewaters.ncsa.illinois.edu/python, https://bluewaters.ncsa.illinois.edu/Python-profiling
Python usage by science problem

- **data science, machine learning**
 - Python is the dominant language
 - Lots of support, often not much scalability beyond single nodes

- **image and data analysis**
 - Often HTC-like workflow
 - Python workflow managers avoid having to learn a new language
 - Extensive image and data processing libraries for python

- **“true” HPC workloads**
 - Python as glue code, e.g. nbodytoolkit, GPAW
 - Most code in python, C / Fortran code does heavy lifting

Share of execution time

Image (C) William Scullin
Cython and numpy

- Cython lets you call C code passing numpy arrays

```c
void cos_doubles(double * in_array, double * out_array, int size){
    int i;
    for(i=0;i<size;i++){
        out_array[i] = cos(in_array[i]);
    }
}
```

cdef extern from "cos_doubles.h":
 void cos_doubles (double * in, double * out, int size)

create the wrapper code, with numpy type annotations
def cos_doubles_func(np.ndarray[double, ndim=1, mode="c"],
 np.ndarray[double, ndim=1, mode="c"]):
 cos_doubles(<double*> np.PyArray_DATA(in_array),
 <double*> np.PyArray_DATA(out_array),
 in_array.shape[0])
```

http://scipy-lectures.org