Looking Out for the Little Guy: A Comprehensive Study of Star Formation in Dwarf Galaxies

Elaad Applebaum

Rutgers University
Blue Waters Graduate Fellow
A Few Open Questions

- How big are the smallest galaxies (is there a “smallest” galaxy)?
- How many nearby galaxies are there?
- How do stars form from gas within galaxies?
- Why do galaxies stop forming new stars?
- Can we explain the diversity of galaxy properties we observe?
- …
A Few Open Questions

- How big are the smallest galaxies (is there a “smallest” galaxy)?
- How many nearby galaxies are there?
- How do stars form from gas within galaxies?
- Why do galaxies stop forming new stars?
- Can we explain the diversity of galaxy properties we observe?
- …

*And what conclusions can we safely draw from our simulations?
Galaxy Formation

- Most (~85%) matter is dark matter
- Initial density perturbations grow under the influence of gravity
- Gas condenses in dark matter “halos”, where it eventually forms the first galaxies
- Over time, halos accrete and merge, forming the systems we see today
Galaxy Formation
Galaxy Formation

- Gravity + hydrodynamics
- Initially dark matter and gas, then stars form
- Star formation, supernovae, mass and radiation from massive stars all modeled as "sub-grid" recipes
Laissez Faire Galaxies?

- Galaxy “self-regulation” obscures the underlying mechanisms of star formation and feedback
- Constraining the details requires studying a regime that cannot self-regulate
- Dwarf and ultra-faint dwarf galaxies

Benincasa+ 2016
Eridanus II
(Distance ~ 1 Mly)

Horologium I
(Distance ~ 300 kly)

Credit: V. Belokurov, S. Koposov (IoA, Cambridge)
Recap

We want to study very small galaxies, in large enough numbers to draw conclusions about different star formation models, in a fully cosmological context.

We need very high-resolution, cosmological hydrodynamic simulations.
Why We Need Blue Waters

<table>
<thead>
<tr>
<th>Scale →</th>
<th>Small</th>
<th>Big</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial</td>
<td>10s of ly (Hydrodynamics and gravity resolutions)</td>
<td>>10^{8} ly (gravitational torques and forces)</td>
</tr>
<tr>
<td>Temporal</td>
<td>100s of yr (force calculations)</td>
<td>>10^{10} yr (age of Universe)</td>
</tr>
</tbody>
</table>
Why We Need Blue Waters

<table>
<thead>
<tr>
<th>Scale ➔</th>
<th>Small</th>
<th>Big</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and gravity resolutions</td>
<td>and torques and forces</td>
</tr>
<tr>
<td>Temporal</td>
<td>100s of yr (force calculations)</td>
<td>>10^{10} yr (age of Universe)</td>
</tr>
</tbody>
</table>

Star formation, supernovae, stellar mass loss \ll resolution
ChaNGa: A Modern Cosmological SPH Code

- Includes the SPH methods and physics modules of GASOLINE2
- Uses CHARM++ runtime system
- Designed for scalability on massive parallel systems like Blue Waters

https://nbody.shop

Menon+ 2015, Wadsley+ 2017
Model Comparisons

Star Formation Models:

- “Metal Cooling (MC)”
 - Density threshold ($100 \text{ m}_H \text{ cm}^{-3}$) in cold ($<10^4 \text{ K}$) gas

- “Molecular Hydrogen (H_2)”
 - Requires sufficient H_2 gas to form stars
 - Tracks non-equilibrium H_2 abundance
 - Pushes star formation to higher densities in un-enriched gas

Environments:

- Far from the Milky Way (>15 Mlyr from Milky Way, in an “isolated” environment)

- Near (analogous to) the Milky Way
 - At cutting-edge resolution!
 - 87 parsec gravitational softening, 11 pc hydro smoothing
 - 994 Msun initial star particle mass
 - 3310 (17900) initial gas (dark matter) particle mass

See also, e.g., Agertz+ 2019
Results Far From the Milky Way
Results Far From the Milky Way

Applebaum+ *in prep*
Results Near the Milky Way

Surprisingly, there is little difference between star formation models!

Applebaum+ in prep
Summary

- Cosmological hydrodynamic simulations are probing for the first time analogs to the faintest known galaxies

- At low enough halo masses, self-regulation breaks down, and we can test the assumptions used in cosmological simulations

- In environments far from the Milky Way, we have shown that different star formation criteria lead to diverging results

- Near the Milky Way, the denser environment leads to converged galaxy counts and locations. *Caution is needed when interpreting nearby observations using simulations of isolated environments*
Acknowledgments

Thank you to Robert Brunner, Scott Lathrop and the entire Blue Waters team for their assistance and support during the Blue Waters Graduate Fellowship.

applebaum@physics.rutgers.edu

https://nbody.shop