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Introduction – Plasmonics

Control light at subwavelength scale by 
exciting collective oscillations on metal-
dielectric interfaces.

Oscillations either propagating as Surface 
Plasmon Polariton (SPP) or  localized as 
Localized Surface Plasmon Resonance (LSPR).

Would allow numerous applications: 
subwavelength waveguides, nanoantennas, 
superlenses, subwavelength imaging, 
nanocircuitry, biosensors. [1-8]

Images from B. Wu et al., Plasmonic Organic Solar Cells, Nanoscience and Nanotechnology, DOI 10.1007/978-981-10-2021-6_2 
(2016), https://doi.org/10.1116/1.4826561 (2013).

Proposed sensor, Au nanostructures on 
VO2 thin film

https://doi.org/10.1116/1.4826561







Introduction – Material Selection
Response to applied optical field
depends on both material selection 
and geometry.

Current materials [9]: 
Ag, Au, Cu- high conductivity, large visible losses 
from interband transitions.
Doped semiconductors- tune bandgap to prevent interband transitions, 

require high doping concentrations.

General criteria: 
Low interband and intraband losses in optical.
Negative real part of dielectric function.

Image from https://doi.org/10.1557/mrs.2012.173 (2012). 

https://doi.org/10.1557/mrs.2012.173


Introduction – Machine Learning
Automate pattern detection in large datasets.

Have descriptors and some target values.  Limited 
knowledge of how to connect values.

Want efficient methods for relating 
descriptors to target.

Provide large training set, systems for 
which descriptors and target are known.

Iteratively search for best statistical relationship.

Descriptors Target

?



Introduction – The Project
Goal to find new materials for plasmonics at optical frequencies.

Databases of materials contain 10’s-100’s of thousands of materials, 
not computationally feasible to calculate all dielectric functions.

Build on existing databases, carry out DFT on a subset to form a 
training set; machine learn plasmonic figure of merit values, quality 
factors.

Apply learned models to find new candidate materials.

Use as motivation to better understand physics underlying ground 
and excited state properties.



Theoretical Background – Dielectric Function

Response of material to applied
electric field

Physics described depends on
energy of interest

Contributions due to intraband
and interband transitions

Drude model for intraband, DFT for 
interband Bandstructure and dielectric function of Au.



Theoretical Background – Plasmonics

Locally enhanced electric field near interface

Loss from imaginary part of dielectric function

From solving Maxwell’s equations near the metal-dielectric interface

Evaluate Q at three energies- 1.1655 eV (Nd:YAG), 1.9595 eV (HeNe), 
2.8075 eV (HeCd metal vapor)



Theoretical Background – Machine Learning

Purpose is to predict quality factors of materials using descriptors 
obtainable from chemical formula (e.g. average atomic mass, number 
of electrons); also gives information about how atomic properties 
influence bulk.

Numerous algorithms available.

Employ machine learning python library Scikit-learn.

Work underway to develop automated machine learning system.  Will 
automate process of machine learning for materials properties.



Methods – Workflow 
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Methods – DFT

Find contribution to dielectric function from interband transitions 
with DFT.

Construct training set as ~1000 randomly chosen metals from 
Materials Project.

PBE exchange correlation functionals.

Plane wave cutoff of 550 eV.



Methods – DFT

DFT performed with Vienna Ab-
Initio Simulation Package (VASP) on 
Blue Waters

Require dense k-point sampling 
near Fermi surface

With 25 x 25 x 25 Γ-centered mesh, 
ωp is converged within 4%, typically 
under 1%

Use 31 x 31 x 31 Γ-centered mesh

Convergence of plasma frequency of Au in VASP.



Methods – Model Validation

Machine learning is susceptible to overfitting.

Prevent using overfit model with 80-10-10
validation.

10%- testing set, fixed.

80%- fitting, 10% validation, 20 iterations.

Balance size of tree or network versus fitting, validation, testing errors.

Image from https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Overfitted_Data.png/300px-Overfitted_Data.png . 

https://upload.wikimedia.org/wikipedia/commons/thumb/6/68/Overfitted_Data.png/300px-Overfitted_Data.png


Preliminary Results – Validating DFT results

Check training set for possible high Q plasmonics
Material ωp QLSPR,1

Au 8.70 0.937

Ag 8.95 1.05

Al 12.4 0.758

Mg 7.58 1.19

Ga 9.76 0.868

Cu3Au 7.14 1.13

AgTe3 6.80 1.12



Preliminary Results – Validating DFT results

Check training set for possible high Q plasmonics

Metals already in 
use

Material ωp QLSPR,1

Au 8.70 0.937

Ag 8.95 1.05

Al 12.4 0.758

Mg 7.58 1.19

Ga 9.76 0.868

Cu3Au 7.14 1.13

AgTe3 6.80 1.12



Preliminary Results – Validating DFT results

Check training set for possible high Q plasmonics

Less common 
metals [11,12]

Material ωp QLSPR,1

Au 8.70 0.937

Ag 8.95 1.05

Al 12.4 0.758

Mg 7.58 1.19

Ga 9.76 0.868

Cu3Au 7.14 1.13

AgTe3 6.80 1.12



Preliminary Results – Validating DFT results

Check training set for possible high Q plasmonics

Energy above hull < 100 meV, can be stable

Possible new 
materials

Material ωp QLSPR,1

Au 8.70 0.937

Ag 8.95 1.05

Al 12.4 0.758

Mg 7.58 1.19

Ga 9.76 0.868

Cu3Au 7.14 1.13

AgTe3 6.80 1.12



Preliminary Results – Learning Q

Train decision trees for each Q

MAEs: 0.22 fitting, 
0.35 validation, 0.39 testing.

Reproduces general trend

Error is same order of magnitude as Q

No subset produces large outliers



Preliminary Results – Applying model

Apply learned models to all metals in Materials Project

Two possible new materials with low energy above hull

High Q even in near UV, uncommon feature for metals

Material QLSPR,1 QLSPR,2 QLSPR,3

NaLi3 0.90±0.10 1.11±0.21 0.74±0.28

Na3Ca 0.86±0.15 1.17±0.18 0.84±0.21



Future Work – Short Term

Apply same process to doped semiconductors.

Require band gap correction to improve estimate of dielectric 
functions.

Also consider amount of electron doping- fix at one value.



Future Work – Long Term

Choose several high Q metals and doped semiconductors.

Construct several related compounds (e.g. NaLi3 -> KLi3, NaK3).

Apply methods which can better capture correlation and 
quasiparticle effects, HSE, GW.

Band structure of surfaces.



Future Work – New Physics

Determining suitability for plasmonic applications requires 
understanding the physics contributing to absorption and the 
dielectric function.

Better capture electron-electron interactions with HSE, include spin 
orbit coupling.

Effect of surface vs. bulk on optical properties.



Why Blue Waters?

Large number of nodes allows submitting many DFT calculations 
simultaneously, vital for creating training set.

Accurate description of excited states (hybrid functionals, GW) 
requires expensive calculations.

Surface calculations require large supercells up to 100 atoms.

Powerful compute nodes, large amounts of memory, and efficient 
parallelization will be necessary for this work.
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Theoretical Background – Decision Trees
Learn series of simple decision rules

Recursively partition fitting set such 
that data points with similar 
descriptors are grouped together

Reduce influence of fitting set using 
ensembles and adaptive boosting

Difficult to learn non-linear relations

Good out of the box choice



Preliminary Results – Metallicity

49,077 materials with band structures in Materials Project.

Atomistic descriptors and crystal symmetry only, Adaboost decision tree.

91.9% classification accuracy, 93% accuracy with crystal structure reported 
in literature [10].



Preliminary Results – Plasma Frequency

DFT calculations for 970 metals in materials 
project.

AdaBoost decision tree regressor.

80-10-10 testing.

MAEs: 0.63 eV fitting, 1.19 eV validation, 
1.05 eV testing .

Experimental uncertainty ~ 0.25 eV for Au



Descriptors



Dielectric Functions – Ga and Mg

Dielectric Function of MgDielectric Function of Ga



Plasma frequency depends on doping 
and lattice dielectric constant in Drude
model.

Calculated 𝜔𝜔𝑝𝑝 consistent with Drude
model, but with crossover at high doping

Preliminary Results – Semiconductor Doping

𝜔𝜔𝑝𝑝2 =
4𝜋𝜋𝜋𝜋𝑒𝑒2

𝑚𝑚𝜖𝜖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
−

1
𝜏𝜏2



Preliminary Results – Bandgap

DFT has known difficulties calculating 
bandgaps.

Use DFT gap and atomistic descriptors and 
fit to experimental values, 326 
semiconductors

80-10-10 testing.

MAEs: 0.50 eV fitting, 0.82 eV validation, 
0.88 eV testing .
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