Structural and Chemical Features Contributing to Defect Tolerance of Binary Semiconductors

Or, how can we make really cheap solar cell materials?

Rachel Kurchin, Prashun Gorai, Tonio Buonassisi, Vladan Stevanović

Blue Waters Symposium
Sunriver, Oregon
June 4, 2018
Hybrid perovskites are surprising!

1) Astounding efficiency gains

Best Research-Cell Efficiencies

- **Multijunction Cells** (2-terminal, monolithic)
 - LM = lattice-matched
 - IM = inverted, metamorphic
- **Three-junction (concentrator)**
- **Two-junction (concentrator)**
- **Two-junction (non-concentrator)**
- **Four-junction (concentrator)**
- **Four-junction or more (concentrator)**
- **Four-junction or more (non-concentrator)**

Single-Junction GaAs
- Single crystal
- Concentrator
- Thin-film crystal

Crystalline Si Cells
- Single crystal (concentrator)
- Single crystal (non-concentrator)
- Multicrystalline
- Silicon heterostructures (HIT)
- Thin-film crystal

Thin-Film Technologies
- CIS (concentrator)
- CIGS
- C4In
- Amorphous Si-H (stabilized)

Emerging PV
- Dye-sensitized cells
- Perovskite cells (not stabilized)
- Organic cells (various types)
- Organic tandem cells
- Inorganic cells (CZTSSe)
- Quantum dot cells (various types)

Chart from NREL National Center for Photovoltaics, accessed 2018

~18 years

~26 years

~37 years

~4.5 yrs

~27 years

~26 years

~27 years

~37 years
Hybrid perovskites are surprising!

1) Astounding efficiency gains
2) Unconventional fabrication techniques

Typical high-performance semiconductor manufacturing

- High temperature!
- High vacuum!
- High purity!

Hybrid perovskites manufacturing:

- Ambient temperature and pressure, precursors and processing done in a normal glovebox in a regular lab!

So how are they so good?!?*

* Other than the toxicity and lack of stability...
Defect Tolerance!

50% relative efficiency loss at over 100 TIMES the concentration of iron!
Why are shallow defects good?

\[U_{SRH} \propto e^{E_t - E_i} \]

“deep” defect state = BAD

“shallow” defect state = LESS BAD

DFT Defect Calculations

\[\Delta H_{D,q}(E_F) \approx \left[E_{D,q} - E_{\text{host}} \right] + qE_F + \sum_{\alpha} n_{\alpha} \mu_{\alpha} + E_{\text{corr}} \]

- Electrochemical potential \((electrons)\)
- Chemical potential \((for\ atoms\ added/removed)\)
 (here \(1 \times \mu_B\))

Compensate for supercell size effects

Kurchin | Blue Waters Symposium | June 4, 2018
Defect Energy Diagrams

\[\Delta H_{D,q}(E_F) \approx [E_{D,q} - E_{\text{host}}] + qE_F + \sum_\alpha n_\alpha \mu_\alpha + E_{\text{corr}} \]

\[\Delta H \]

\[-2 \quad 0 \quad +1 \quad +2 \]

VBM

\[E_F \]

VBM + Eg
How does defect tolerance happen?

In $^{+1, +3}$

Sn $^{+2, +4}$

Sb $^{+3, +5, -3, -2}$

Tl $^{+1, +3}$

Pb $^{+2, +4}$

Bi $^{+3, +5, -3, -2}$
But they don’t have shallow defects!

~30 separate DFT calculations on $\mathcal{O}(100)$ atoms.
Updating our understanding

change the **structure**
change the **energies** (chemistry)
Back to those binary iodides

(a) InI

(b) TlI

(c) SnI₂

(d) PbI₂

(e) SbI₃

(f) BiI₃

Testing the new theory

Thanks, Blue Waters!

- BW Graduate Fellowship gave me intellectual independence and confidence in my research
- And a great community!
Updated Theory of Defect Tolerance: Cation vacancies (chemistry)

a. deep cation vacancy

Updated Theory of Defect Tolerance: Anion vacancies (structure)