Molecular and Electronic Dynamics Using the OpenAtom Software

Sohrab Ismail-Beigi (Yale Applied Physics)

Subhasish Mandal (Yale), Minjung Kim (Yale), Raghavendra Kanakagiri (UIUC), Kavitha Chandrasekar (UIUC), Eric Mikida (UIUC), Eric Bohm (UIUC), Prateek Jindal (UIUC), Laxmikant V. Kale (UIUC), Nikhil Jain (LLNL), Qi Li (IBM), Glenn J. Martyna (IBM)

http://charm.cs.illinois.edu/OpenAtom
What is OpenAtom

NSF SI2-SSI: Scalable, Extensible, and Open Framework for Ground and Excited State Properties of Complex Systems

- OpenAtom software package: DFT, GW
- Plane waves and pseudopotentials
- charm++ parallel infrastructure
OpenAtom: what does it do?

- Massively parallel *ab initio* molecular dynamics (AIMD)
- Excited electronic states (Green function methods)

- Describes electrons quantum mechanically, i.e., bonding, *explicitly* using basic physics (no fudge parameters or fits)

- Uses general Fourier basis to represent electron waves
- Uses Charm-FFT *library*: 2D decomposed parallel FFT with spherical cutoff awareness

For the experts:
- Plane waves, pseudopotentials, LDA or GGA
- Car-Parrinello and Born-Oppenheimer MD of electronic ground state
- GW self-energy for electronic excitations
Overview

• What is OpenAtom?

• We are studying metal organic frameworks (MOFS)
 o What is a MOF?
 o Why study hydrogen in MOFs?

• What we learned so far on MOFs

• Improving large scale GW calculations
Hydrogen storage for green energy

- Hydrogen as fuel
 - energy dense
 - clean burn
 - hard to store

- Need lightweight material that stores and releases a lot of H_2

- Metal organic frameworks (MOFs)
 - Porous
 - Large interior surface area
 - Stores plenty of H_2
 - Complex material, details of process not known
 - Optimization of H_2 storage not great to date

http://energy.gov/eere/fuelcells/hydrogen-storage

DOE target for a H_2 storage system not yet been reached: e.g., capacity of 40 g H_2 per L.
Typical MOF structure
MOFs we study

- MOF-5 : $\text{Zn}_4\text{O}(1,4\ \text{benzenedicarboxylate})_3$
- 424 atoms in a simulation cell
- Can change Zn to other metals

Questions to answer:
- How do H_2 bind / diffuse inside MOF?
- Temperature & loading dependence

Molecular dynamics (MD) needed
- Simulate motion of MOF + H_2 to see what happens in real time
- Dynamics & thermodynamics

Technical challenge: H_2 is very light
- Standard MD: point-like atoms move due to interatomic forces
- Hydrogen is *quantum mechanical*: not point-like but wavy…
Difficulties: quantum nuclei

- Quantum nuclear module validated/tested in serial
- Quantum nuclear module validated/tested on small parallel calculations we can do locally

- Quantum nuclear for large MOF with many nodes and “beads” (quantum replicas) fails on BW at present (need to run ~1000 nodes for ~3 hours to reach failure)

- Some type of irreproducible parallel problem
- ~9 months of work and bug removal has narrowed it to a single module but not isolated yet

- **General problem**: how to validate/test parallel code when only possible on a computer as big as BW? How to know code is correct before BW allocation?
Overview

- What is OpenAtom?

- We are studying metal organic frameworks (MOFS)
 - What is a MOF?
 - Why study hydrogen in MOFs?

- What we learned so far on MOFs

- Improving large scale GW calculations
Preliminary results: MD itself
Preliminary results: diffusion

Paths of H₂ molecules over simulation
Preliminary results: diffusion

Heatmap: mean H\textsubscript{2} positions in simulation cell
Preliminary results: diffusion

\[6Dt = \langle \| \vec{r}(t) - \vec{r}(0) \|^2 \rangle \quad \text{(for long times } t) \]

- Slope of black curve:
 \[D \approx 8.5 \pm 0.5 \times 10^{-8} \frac{m^2}{s} \]

- Seems to agree with available literature
 \[D \approx 7 \times 10^{-9} \frac{m^2}{s} \]

\[\vec{r}_2 = \vec{r}_1 - \vec{r}_0 \] (for long times \(t \))

\[
\begin{align*}
\text{Full MOF-5 at 77 K: 43 H}_2 \text{ molecules}\\
\text{J. Phys. Chem. C} \ 2008, \ 112, 2911-2917
\end{align*}
\]
Preliminary results: diffusion

<table>
<thead>
<tr>
<th>D (10^{-8} \text{ m}^2/\text{s})</th>
<th>Mini-MOF</th>
<th>Full MOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>77 K</td>
<td>1.1 ± 0.2</td>
<td>0.85 ± 0.05</td>
</tr>
<tr>
<td>300 K</td>
<td>6.9 ± 0.8</td>
<td>3.5 ± 0.4</td>
</tr>
<tr>
<td>ratio</td>
<td>6.3</td>
<td>4.1</td>
</tr>
</tbody>
</table>
Overview

• What is OpenAtom?

• We are studying metal organic frameworks (MOFS)
 o What is a MOF?
 o Why study hydrogen in MOFs?

• What we learned so far on MOFs

• Improving large scale GW calculations
DFT: problems with excitations

Energy gaps (eV)

<table>
<thead>
<tr>
<th>Material</th>
<th>LDA</th>
<th>Expt. [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>3.9</td>
<td>5.48</td>
</tr>
<tr>
<td>Si</td>
<td>0.5</td>
<td>1.17</td>
</tr>
<tr>
<td>LiCl</td>
<td>6.0</td>
<td>9.4</td>
</tr>
</tbody>
</table>

Solar spectrum
$P(r, r') = \frac{\partial n(r)}{\partial V(r')} = -2 \sum_{v}^{\text{filled}} \sum_{c}^{\text{empty}} \frac{\psi_v(r) \psi_c(r) \psi_v(r') \psi_c(r')}{\varepsilon_v - \varepsilon_c}$
GW : scaling

\[P(r, r') = \frac{\partial n(r)}{\partial V(r')} = -2 \sum_v^{\text{filled}} \sum_c^{\text{empty}} \frac{\psi_v(r)\psi_c(r)\psi_v(r')\psi_c(r')}{\varepsilon_v - \varepsilon_c} \]

Scaling on Mira

- 32 threads per node

Scaling on BlueWaters

- 32 cores per node
GW : scaling

\[f_{vc} = \psi_v \times \psi_c \text{ for all } v, c \]
\[P += f_{vc} \times f_{vc}^T \text{ for all } f \]

GW Scaling Results on Bluewaters
(Dataset Si108)
Summary

• Study metal organic frameworks (MOFS) for H₂ storage

• Used OpenAtom on Blue Waters

• Preliminary non-quantum simulations
 o Seem reasonable
 o Must be mined for more physical insight
 o Next 3 months: finalize analysis of MD results

• GW part in OpenAtom: scaling greatly improved on BW ready for public release