Multi-scale simulations of whole yeast cells

Tyler Earnest / PI: Zan Luthey-Schulten (UIUC)
NCSA Blue Waters Symposium for Petascale Science and Beyond: June 6, 2018
Chemical kinetic simulations

Chemical kinetic simulations

Chemical kinetic simulations

\[c(t), \quad c(x, t) \]

- **CME** (Chemical Master Equation)
- **ODE** (Ordinary Differential Equations)
- **PDE** (Partial Differential Equations)
- **RDME** (Reactive Diffusion Master Equation)

Single molecule resolution

Spatial resolution

Diffusion rate

Concentration

Chemical kinetic simulations

$P(n, t)$

$C(t)$

$P(x, t)$

Chemical kinetic simulations

\[P(n, t) \]

\[P(n, x, t) \]

\[c(t) \]

\[c(x, t) \]
CME/ODE — Well mixed chemical kinetics
Saccharomyces cerevisiae — Characteristic scales

<table>
<thead>
<tr>
<th></th>
<th>Conc. [µM]</th>
<th>Diff. coeff. [µm²/s]</th>
<th>Diff. time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>~1,000</td>
<td>~200</td>
<td>0.013</td>
</tr>
<tr>
<td>Protein</td>
<td>~1</td>
<td>~5</td>
<td>0.53</td>
</tr>
<tr>
<td>Gene</td>
<td>10⁻⁴</td>
<td>10⁻⁵</td>
<td>10⁵</td>
</tr>
</tbody>
</table>
Saccharomyces cerevisiae — Characteristic scales

<table>
<thead>
<tr>
<th></th>
<th>Conc. [µM]</th>
<th>Diff. coeff. [µm²/s]</th>
<th>Diff. time [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar</td>
<td>~1,000</td>
<td>~200</td>
<td>0.013</td>
</tr>
<tr>
<td>Protein</td>
<td>~1</td>
<td>~5</td>
<td>0.53</td>
</tr>
<tr>
<td>Gene</td>
<td>10⁻⁴</td>
<td>10⁻⁵</td>
<td>10⁵</td>
</tr>
</tbody>
</table>

Concentration/time scales do not overlap!
Yeast galactose switch

Ramsey et al. Nat Genet. 2006 10.1038/ng1869
Yeast galactose switch

10⁷ reactions per second
over 6 hours

Ramsey et al. Nat Genet. 2006 10.1038/ng1869
Yeast galactose switch

10^7 reactions per second over 6 hours

Ramsey et al. Nat Genet. 2006 10.1038/ng1869
Hybrid CME/ODE simulations
Hybrid CME/ODE simulations

Chemical master equation: *Gillespie algorithm*

Hybrid CME/ODE simulations

Chemical rate equation: **LSODA**

Chemical master equation: **Gillespie algorithm**

Hybrid CME/ODE simulations

Chemical rate equation: \textit{LSODA}

Chemical master equation: \textit{Gillespie algorithm}

Results: 40x speed up with limited impact on accuracy

Wall time to simulate 750 min

<table>
<thead>
<tr>
<th></th>
<th>External galactose</th>
<th>0.055 mM</th>
<th>2.0 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME (hr)</td>
<td>2.1</td>
<td>47.4</td>
<td></td>
</tr>
<tr>
<td>Hybrid (10 s)</td>
<td>0.4 (5.2)</td>
<td>1.1 (43.1)</td>
<td></td>
</tr>
<tr>
<td>Hybrid (1s)</td>
<td>0.8 (2.6)</td>
<td>1.8 (26.3)</td>
<td></td>
</tr>
</tbody>
</table>

![Graphs showing simulation results and protein counts]
RDME/ODE — Spatial resolution
Reaction-Diffusion Master Equation
Reaction-Diffusion Master Equation
Reaction-Diffusion Master Equation

Discretize to lattice
Reaction-Diffusion Master Equation

Discretize to lattice

Particles:
- React within subvolumes
- Diffuse between subvolumes
Reaction-Diffusion Master Equation

Discretize to lattice

Particles:
 React within subvolumes
 Diffuse between subvolumes

System state described by particle count of each type at each subvolume
Whole-cell modeling with Lattice Microbes

Designed for CUDA

Multiple levels of parallelism
- GPGPU
 - Roberts et al. IPDPS (2009)
 - 10.1109/ipdps.2009.5160930
- Multi-GPU
 - 10.1016/j.parco.2014.03.009
- MPI
 - (w.i.p.)

Extensible through Python
 - Peterson et al. PyHPC 2013
 - 10.13140/2.1.3207.7440
 - Hybrid solvers
Yeast galactose switch — Initial geometry

Cryo-electron tomography

2.04 × 1.91 × 0.242 μm³
section of yeast cell

2% of total volume

Use tomogram as template to build whole cell geometry
Use tomogram as template for cell geometry
G80 is sequestered from nucleus
New transporters are localized near nucleus

\(t=0.0 \text{ min} \)
New transporters are localized near nucleus
Outlook

Demonstrated
- CME \leftrightarrow ODE
- RDME \leftrightarrow ODE

Planning
- RDME \leftrightarrow PDE

In progress
- RDME \leftrightarrow Brownian dynamics
Outlook

Demonstrated
- CME \leftrightarrow ODE
- RDME \leftrightarrow ODE

Planning
- RDME \leftrightarrow PDE

In progress
- RDME \leftrightarrow Brownian dynamics
Outlook

Goal
Whole-cell physico-chemical model of minimal cell

JCVI-syn3A
- 400 nm diameter
- 453 protein coding genes
- 2 hr doubling time

Multi-scale modeling
- ODE — Metabolism
- RDME — Gene expression
- BD — Ribosomes, DNA, cytoskeleton

1Huchison et al. Science 2016 10.1126/science.aad6253
2Breuer, TME, …, ZLS 2018 submitted
3TME, …, ZLS. BPJ 2016 10.1016/j.bpj.2015.07.030
Acknowledgements

Zan Luthey-Schulten
David Bianchi
Mike Hallock
Joe Peterson
Acknowledgements

Zan Luthey-Schulten
David Bianchi
Mike Hallock
Joe Peterson