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Model Simulations
Progress on Blue Waters

* 0.25°atmos/land —only (30 years)
* (0.36M node-hours for one simulation — total ~4.3M

* 4 present day * Fully-coupled 0.25° atmos/land - 1° ocn/ice

* 8 future scenarios (RCP8.5) * 1-1.8M node-hours for one simulation — total ~17M
* 1 Pre-industrial control
* Fully-coupled 0.5° atmos/land - 1° ocn/ice * 2 climate sensitivity

e 320t Century

* 3 future RCP2.6 o
e 3 future RCPS.5 } complete within 2-3 months

* 1 Pre-industrial control
e 320t Century
e 3 future RCP2.6

3 future RCP4.5 * Fully-coupled 0.25° atmos/land — 0.1° ocn/ice
3 future RCP6.0 e 3.23M node hours for one simulation — total ~13M
3 future RCP8.5 * 1 Pre-industrial control

* 120" Century

* 1 future RCP8.5 node_hours



What is an Atmospheric River?
Observations

EarthWind map, 3-hr precip overlaid on 850mb winds Ralph et al. 2011 (NOAA HMT program)

20 times as much water as the Mississippi River.



The Record Breaking Water Year 2017

A major contributor to the anomalous precipitation over California has been the numerous
landfalls of atmospheric rivers over the U.S. West Coast

49 Atmospheric Rivers have made
landfall over the West Coast thus
far during the 2017 water year (1

Oct. — 12 April 2017), which is
much greater than normal

Of the 49 total atmosphericrivers that
made landfall this year, 1/3 have been
“strong” or “extreme” based on the AR
strength scale.

AR Strength AR Count*
Weak 12
Moderate 21
Strong 13
Extreme 3

Center for Western Weather
and Water Extremes

SCRIPPS INSTITUTION OF OCEANOGRAPHY
AT UC SAN DIEGO
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The Record Breaking Water Year 2017

April 4,2017 April 5,2016
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Intensity: droughtmonitor.unl.edu
DO (Abnormally Dry) : ") D2 (Severe Drought) . D4 (Exceptional Drought)
D1 (Moderate Orought) () D3 (Extreme Drought)

The high levels of precipitation during the current water year have led to a significant reduction
in the region’s drought

One year ago much of California was in exceptional drought (brown areas). As of early April
2017, this has mostly ameliorated, with only residual pockets of moderate drought in the
southern coastal region between Santa Barbara and Orange counties, and in Imperial county

Center for Western Weather By F.M. Ralph, D. Pierce, C. Hecht, M. Dettinger, D. Cayan

and Water Extremes

SCRIPPS INSTITUTION OF OCEANOGRAPHY
AT UC SAN DIEGO




What is an Atmospheric River?
CESM Representation

Comparison Between Present
and Future Precipitable Water

CAM Precipitable Water (TMQ)




Atmospheric River Definition

Relative threshold technique (Zhu and Newell (1998 Mon. Wea. Review))

|Qthreshold| >= |Qmean| + 0.3 ( |Qmax - Qmean| )

US. West Coast (35-52N)
Wind speed threshold = 10 m/s

Wind direction = from the southwest

United Kingdom (49-60N)
Wind speed threshold = 25 m/s

Wind direction = easterly component

Iberian Peninsula (35-49N)
Wind speed threshold = 15 m/s

Wind direction = easterly component

Q = total column
precipitable water
Mean = zonal mean
Max = zonal maximum

Shape thresholds
dy/dx >=2

dy minimum = 200km




Number of ARs

Number of ARs

Atmospheric River Climatology

California Iberian Peninsula
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Changes 1n Wind due to Resolution

DJFUV300 Qdeg-CESM1C520C mls
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Future Jet Changes:

Wind speed and Direction
300mb
DJF average
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Future Jet

Wind speed and Direction
300mb
DJF average
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North Atlantic U (m/s)
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Future AR Changes

North Atlantic
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Impact of tenth-degree Ocean

Atlantic Basin

Pacific Basin

Integrated Atmospheric Moisture
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Summary

* AR location and strength has been tied to atmospheric jets

* Those making landfall on the U.S. West Coast and Iberian Peninsula track the
subtropical jet

* Those making landfall in the U.K. track both the subtropical and eddy-driven jets

* Using a higher resolution atmosphere improves the representation and
statistics of ARs

* Due to improvements in position and strength of the atmospheric jets
* The largest changes in number of ARs occurs in their active season

* In DJE the active season for ARs, we anticipate a decrease in landfalling
ARs in the PNW and an increase in CA, the UK, and Iberian Peninsula
due to changes in the atmospheric jets.



Future Jet Changes: Resolution Impacts

resent Day (1980-2005): DJF wind speed
US West Coast

-2050-2006-2015

Future (2041-2050) minus

Fully-coupled
Quarter-degree atm/Ind
Tenth-degree ocean/ice
Single simulation

Fully-coupled
Half-degree atm/Ind
One-degree ocean/ice

Pressure (mb)

Pressure (mb)

2041 -205?-200&201 5

UK

Height (km)

Pressure (mb)

Height (km)

Pacific Northwest:
Decrease in wind speed
Subtropics: Increase

UK /Iberian Peninsula:
Only seeing increase of
subtropical jet over the
ocean

Structure of winds does
not depend on
resolution but the
strength does.
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Meridional
Water
Transport

Column integrated
meridional water
transport appears to
behave differently
with an ultra high
resolution ocean
model (wide dashed
lines, bottom left) for
the North Atlantic
during seasonal
transition months.
Heat transport (not
shown) also exhibits
this behavior. The
presence of detailed
ocean eddies and
their impact on heat
and water transports
warrant further
investigation.
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