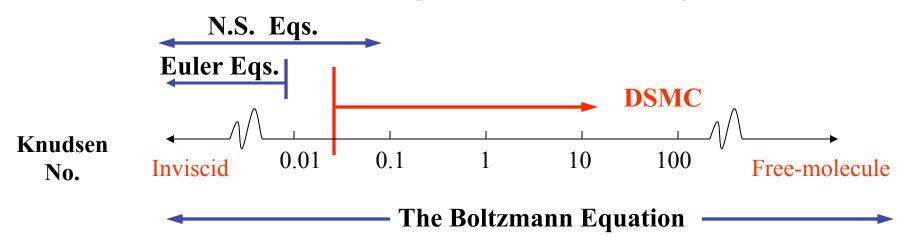


Particle Approaches for Modeling Nonequilibrium Flows using Petascale Computing


Deborah A. Levin, Saurabh, Burak Korkut, and Ozgur Tumuklu

Department of Aerospace Engineering University of Illinois at Urbana-Champaign, Urbana, IL

BlueWaters Symposium
Sunriver, OR, May 10-13th 2015

Relations of Different Flow Models

Kn = mean free path/ characteristic length

Boltzmann equation:

$$\frac{\partial f_1}{\partial t} = -\vec{q}_1 \cdot \frac{\partial f_1}{\partial \vec{r}} + \int d\vec{p}_2 \int d\Omega g \sigma(\theta, g) \left(f_{1'} f_{2'} - f_1 f_2 \right)$$

= flux thru CV, Δ V1 + change due to collision in/out of CV

• The DSMC is a numerical method for solving the Boltzmann equation, under the assumption of a dilute, binary "gas":

- 1 DSMC particle $\sim 10^6 10^{18}$ physical gas particles
- During each time step, free motion and collisions are performed concurrently:

Free motion:

$$\vec{r}_2 = \vec{r}_1 + \Delta t \cdot \vec{v} \tag{1}$$

Collisions:

1) the number of collision pairs, q, is calculated:

$$q = \frac{1}{2} N \overline{N} F_N \left(\sigma C_r \right)_{\text{max}} \Delta t / V_c$$
 (2)

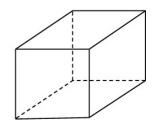
2) the collision probability, p, for each pair:

$$P = \frac{\sigma C_r}{\left(\sigma C_r\right)_{\text{max}}} \tag{3}$$

- 3) the acceptance-rejection principle is used to evaluate whether a collision is to be evaluated.
- 4) the particle energy would be redistributed for a successful inelastic collision by:
 - i. Larsen-Borgnakke/FHO model for internal energy exchange, MD/QCT
 - ii. Chemical reactions, MD/QCT, TCE

AFOSR Gas – Surface MURI has changed this paradigm.

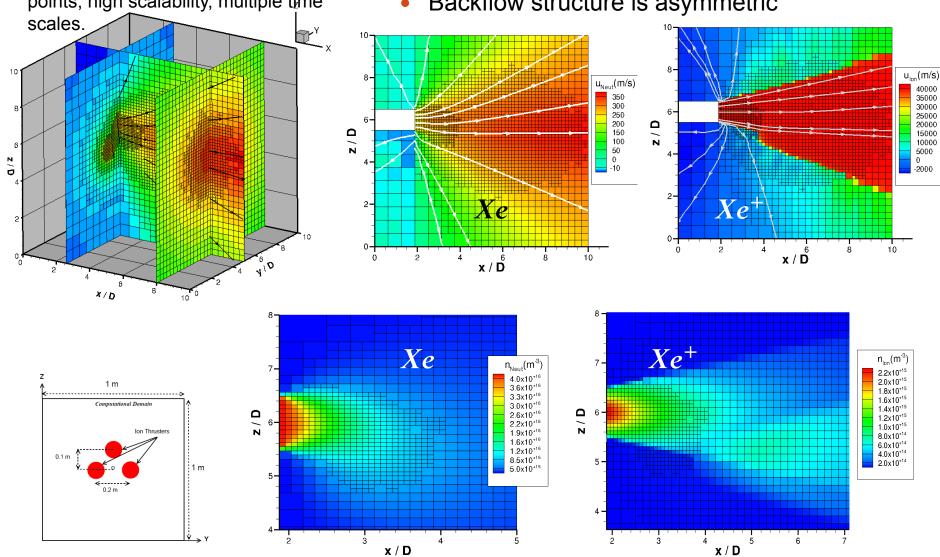
Comparison of Methodologies


	MD	DSMC
Method	kinetic	kinetic
Application	Solid, Liquid, Gas	Gas (+ drops)
Simulated Particle	-	` •
geometry	point-size	sphere
${}^{\mathbf{a}}\mathbf{F}_{\mathbf{N}}$	1	$10^6 \sim 10^{18}$
Interactions	Potential	Collision
Time Step	10 ⁻¹⁵ Sec	$10^{-6} \sim 10^{-9} \mathrm{Sec}$
System Capabilities		
Computational Domain	~nm	> mm
# of Real Particles	$\sim 10^{6}$	$> 10^{23}$
time Scale	~1-10ns	$> 10^{-9} \mathrm{s}$

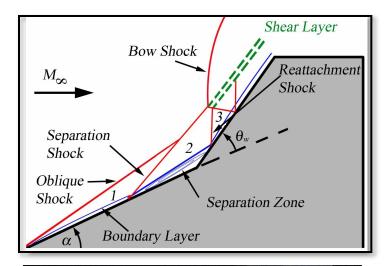
 $^{{}^{\}mathbf{a}}\mathbf{F}_{\mathbf{N}}$: the number of real atoms represented by a simulated particle.

SUGAR Framework & Parallelization Strategies

- Scalable Unstructured Gas-dynamics with Adaptive mesh Refinement (SUGAR) started as a development effort for simulating electric propulsion plumes in 2012.
- Last year, a separate effort for modeling other physical applications building on the MPI-C++ framework with OOP.
- For simulating the shock dominated flows, a major effort was added for modeling gas-surface interactions.
- Adaptive Mesh Refinement (AMR) is a robust and flexible approach for creating the computational mesh.
- Hybrid capability with OpenMP and GPGPUs is under consideration.



Hexahedron used in this work


Use of Peta-scale Computing Techniques to Model Neutral and Charged Species Backflow Contamination

- AMR/Octree factor of 300 fewer grid points, high scalability, multiple time
- Resolve Charge Exchange Collisions
- Backflow structure is asymmetric

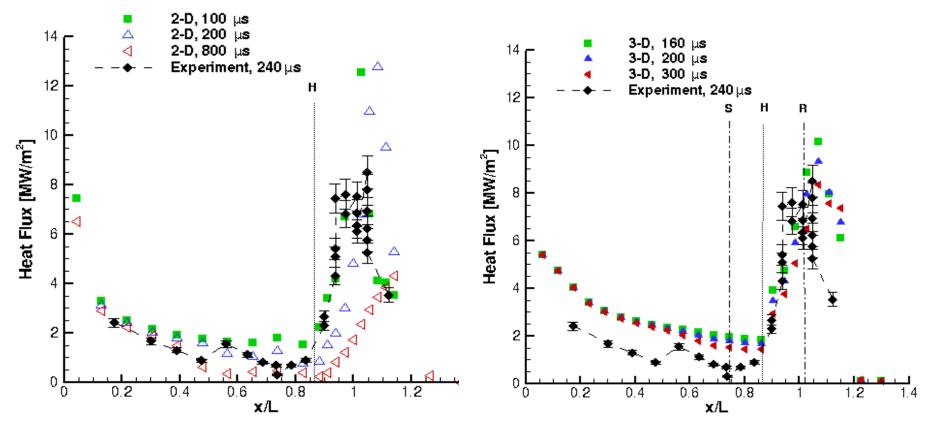
Strong Shock Interactions – HET* N₂ High Enthalpy Case

Freestream Parameters	M 7_8 (High Enthalpy)
Mach number	7.14
Static Temperature, K	710
Static Pressure, kPA	0.78
Velocity, m/s	3812
Density, kg/m ³	0.0037
Number Density, /m ³	7.96 x 10 ²²
Stagnation Enthalpy, MJ/kg	8.0
Unit Reynolds number, /m	0.4156x 10 ⁶
Knudsen number	4.0256 x 10 ⁻⁴

Figure 2. The experimental double wedge model used in the current study. The coaxial thermocouple gauges can be seen along the center of the model. Note: Some gauges are staggered to increase spatial resolution.

- *Hypervelocity Expansion Tube AIAA 2012-0284 by A.B. Swantek and J. M. Austin.
- Stagnation enthalpies from 2-8 MJ/kg, about a 30-/55-deg double wedge model.

DSMC Numerical Parameters

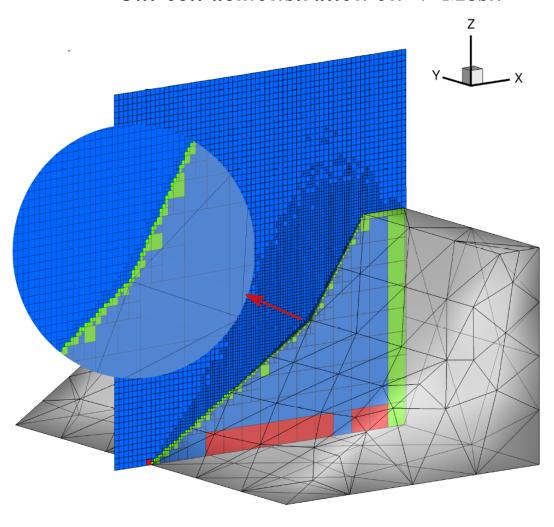

Numerical Parameter:	Nitrogen 2-D	Nitrogen 3D baseline	Nitrogen 3D fine	Air 2-D	Argon 2-D
Total number of time-steps	800,000	300,000	100,000	400,000	400,000 (ongoing)
Number of molecules per simulated particle	1.0x10 ¹³	4.0x10 ¹³	1.0x10 ¹³	2.5x10 ¹²	1.0x10 ¹³
Number of cells	450 x 400	200 x 200 x 150	280 x 280 x 210	400 x 400	400 x 400
Number of simulated particles	96x10 ⁶	1.86x	7.96x10 ⁹	312x10 ⁶	96x10 ⁶
Grid adaptation	20x20	20x20x1	30x30x1	20x20	20x20
Number of processors	64	128	192	128	128
Total CPU hours	10,240	106,000	112,200	16,384	-

Comparisons of N₂ Heat-Flux for 2-D and 3-D Cases

a) Experiment vs. 2-D DSMC

b) Experiment vs. 3D DSMC

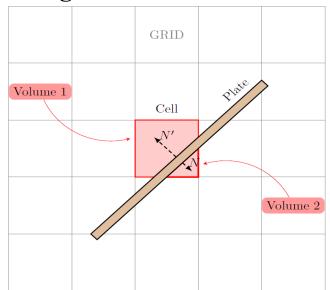
S : Separation H : Hinge point

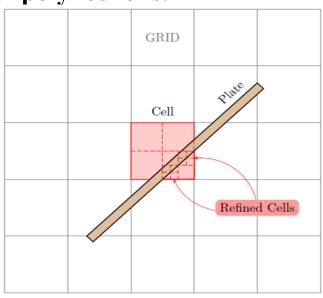

R : Reattachment

L: Length of the first wedge=0.05 m

Representation of the V-Mesh

Cut-cell demonstration on V-Mesh



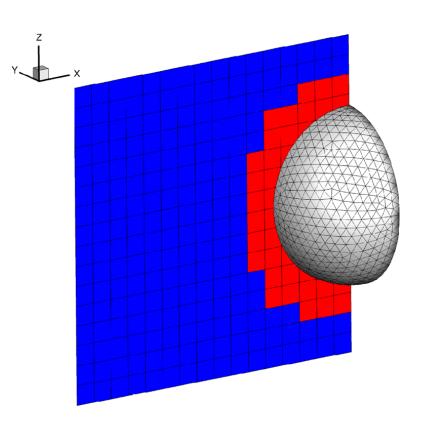

- Green Cells: Cut-cells.
- Red cells: Cells having triangular edges of the surface panels passing through them for reference frame shown.
- No split-cell.
- Fourth level of Refinement in the vicinity of the surface.

Cut-cell - Split-Cells

- Split-Cell: Cell split into many different flow volumes.
 - Different volumes may have different flow properties
 - Algorithm calculates linked-list of polyhedrons.

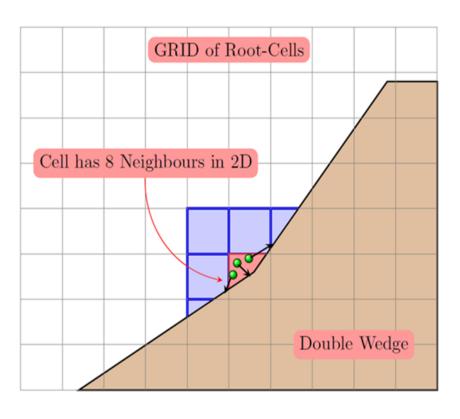
- Representation of a split-cell in V-Mesh is difficult.
 - Remedy: VTK-Polygon Class or Refinement of the split-cell.

Gas-Surface Interaction (1/2)


- Particle does not keep track of the cells during the movement.
- Hence, each particle has to be checked for the possible collision with the surface. (Very inefficient)

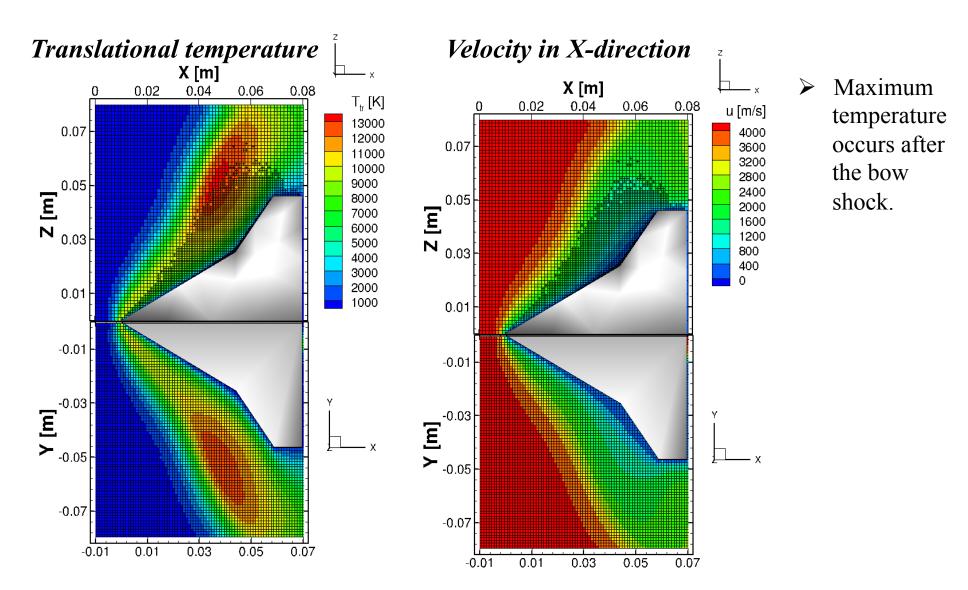
• Efficient way:

- Fact: Particle never crosses more than one cell in single time step.
- Tagging the cut-cells and their neighbors.


("NearTheGeometry" ?= 1)

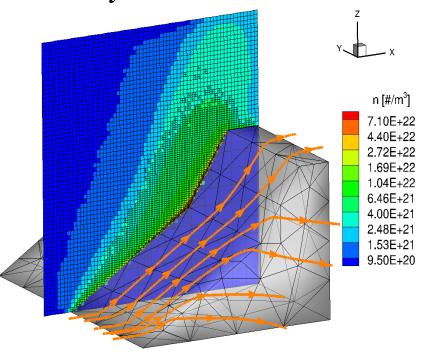
Cut-cell check performed earlier on root-cells comes in handy.

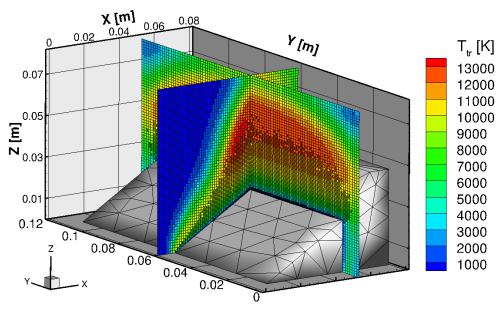
Gas-Surface Interaction (2/2)



• Further improvement:

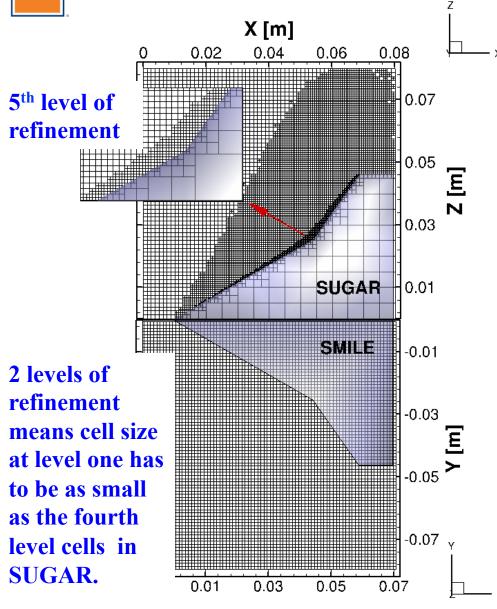
- Instead of looping over all surface triangles, loop over the triangles in the lists of the root cut-cell and its neighboring cells.
- > 38% efficiency improvement for a hemisphere geometry composed of 1400 triangles.
- Each particle loops over less than 20 triangles for possible intersection.
- Procedure is trivially parallelizable.

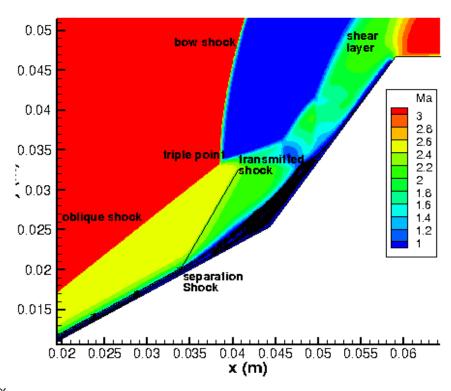

Argon flow over a Double-wedge



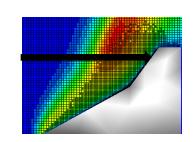
3-D Pressure Relief

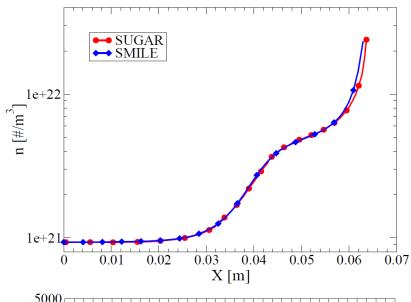
Streamlines and Number Density Contour

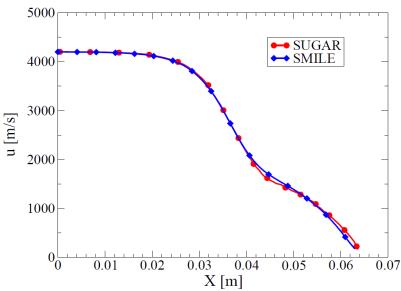

3-D Effect on Temperature Contours

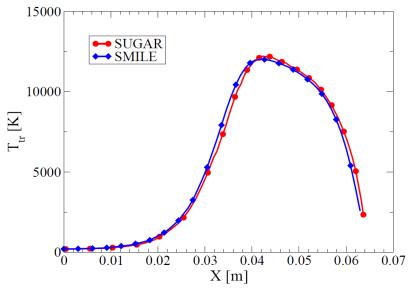

- Number density increases as the flow approaches the surface.
- > Streamlines show that the 3-D effects are present.
- ➤ Maximum temperature decreases along the span due to 3-D effects.

Collision Mesh Comparison



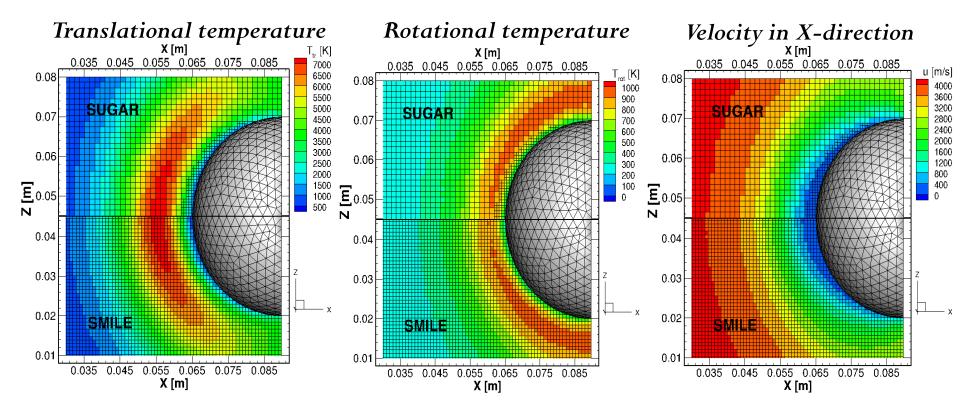

• A fifth level of refinement is observed in the vicinity of the surface.





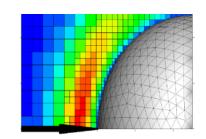
Quantitative Agreement with Physical Collision Models

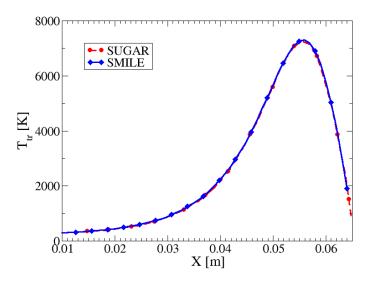
Observations	SUGAR	SMILE
Smallest Cell Size	6.25E-04	8E-04
Number of Particles	51,990,000	59,850,000
Processors used	256	256
Sampling Time [min]	330	93

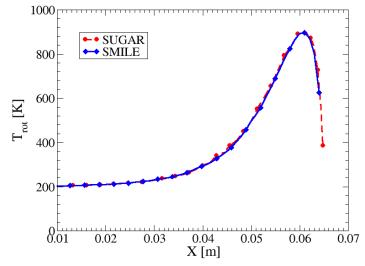

Nitrogen over a Hemisphere-Stronger Shock – Greater Non-equilibrium

Parameters	Value
Number Density	9.33E+19
FNUM	4.0E+09
Freestream Temperature [K]	200
Freestream Velocity	4200
Time step [s]	1.0E-07
Accommodation coeff., α_{E}	1
Surface Temperature [K]	200
Viscosity Index,	0.74
Rotational Number	15
Number of Samples	20,000

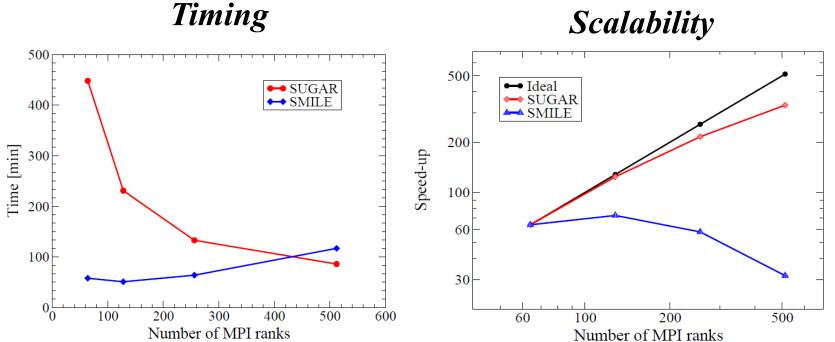
- Mach 14 flow encounters a strong bow shock.
- Knudsen number: 0.27
- High Kn imposes high non-equilibrium condition downstream of the shock.


Comparison of Sugar vs 2 Level Cartesian (SMILE)




- Reduced kinetic energy after the bow shock goes into translational and rotational modes.
- Particle-surface interaction dominate over particle-particle interaction.

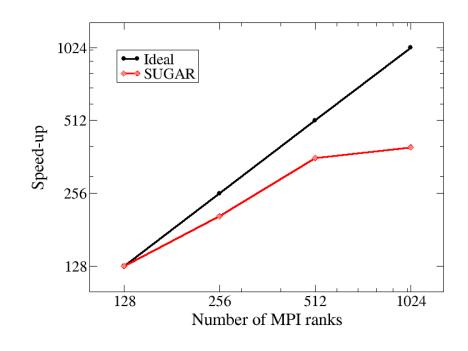
Quantitative Comparison and Numerical Comparisons


Temperature slip is well predicted by the SUGAR code due to the finer level of refinement.

5000		
4000		► SUGAR SMILE
3000 E E D 2000		
2000		
	0.02 0.03 0.0	4 0.05 0.06
	X [m]	

Observations	SUGAR	SMILE
Smallest Cell Size	6.25E-04	9E-04
Number of Particles	22,064,000	23,754,496
Processors used	512	256
Sampling Time [min]	298	56

Ar Flow over Double Wedge - Kn. = 0.02

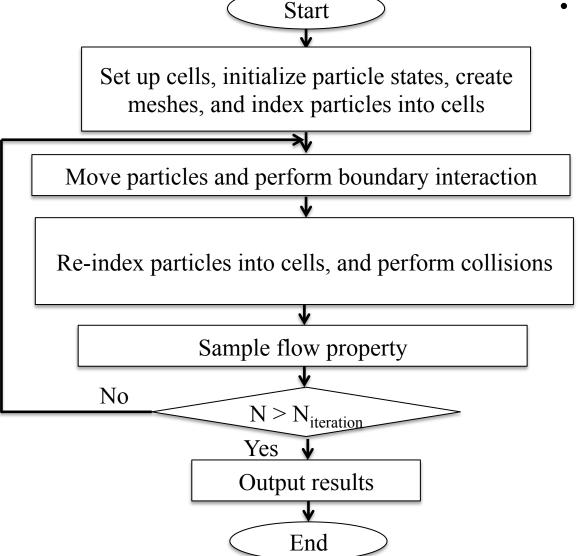


- The SUGAR code gives linear speed-up up to 128 processors and for 512 processors maximum speed-up of 335 reduction in speed-up is observed for more than 128 processors.
- SMILE gives no speed-up beyond 64 processors.
- However, time taken by the SUGAR code is higher than that of SMILE for number of processors less than 512.
- The major reason for this is that in the SUGAR collision mesh near the surface is more refined.

Preliminary Speed-up Study – Flow Over a Hemisphere – Strong Shock

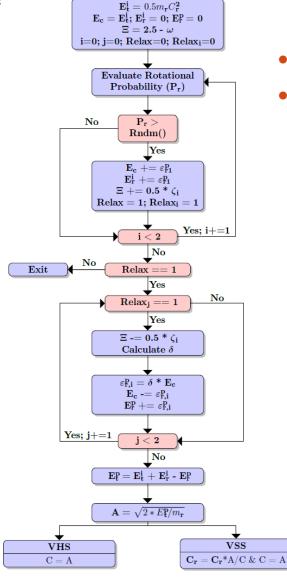
Observations	SUGAR
Smallest Cell Size	6.25E-04
Number of Particles	22,064,000
Maximum level of refinement	3
Number of particles per (AMR level 3)	120 (in shock region, close to wall)
Number of particles per cell (AMR level 2)	80 (free stream) 150 (in shock region)

- For 512 processors maximum speed-up of 358 is observed, however, the profile flattens if the number are processors are increased.
- Speed-up decreases because of the load imbalance.
- Load imbalance is mainly caused by the processors that are located near the geometry where domain is much more refined, thus spending more time per step.
- Need to reduce communication time which could be a major bottleneck beyond 512 number of processors.


Acknowledgments

- The research performed at the Pennsylvania State University and continued at University of Illinois Urbana-Champaign was supported by the Air Force Office of Scientific Research through AFOSR Grant No. FA9550-11-1-0129 with a subcontract award number 2010-06171-01 to PSU and UIUC.
- We gratefully acknowledge the support provided by the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois.
- We gratefully acknowledge the support provided by DoD HPC, Drs. Ryan Gosse and Justin Koo.

Scalability and Timing

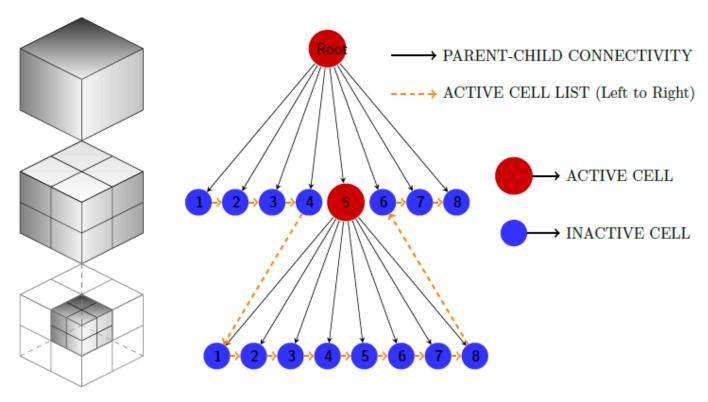

in in the contract of the cont

- Key Characteristics of DSMC:
 - Numerical method for rarefied gas flows
 - Particle based probabilistic approach
 - Numerical solution to Boltzmann's equation
 - Decoupling of the movement and collision phase
 - Each computational particle represents many real particles
 - FNUM: number of actual particles represented by a computational particle
 - Various Boundary Conditions

Rotational relaxation model

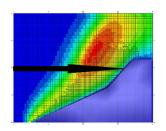
- Elastic collision models: VHS and VSS
- Inelastic collision model:
 - Borgnakke-Larsen continuous rotational relaxation model
 - Hierarchical implementation*
 - Model follows equipartition theorem.
 - > Rotational number can be set as a constant or temperature dependent.
 - > Temperature dependence is based on Parker's formula:

$$Z \downarrow r \uparrow C$$
 (T) = $Z \downarrow r, \infty /1 + \pi \uparrow 3/2 /2 /2 ($T \uparrow * /T$) $\uparrow 2 + (\pi \uparrow 2/4 + \pi) T \uparrow * /T \downarrow e$$


Lumpkin's correction is applied:

$$Z \downarrow r = \zeta \downarrow t / \zeta \downarrow t + \zeta \downarrow R \quad Z \downarrow r \uparrow C \quad and \quad P \downarrow r = 1/Z \downarrow r$$

δ fraction of the available energy is given to the
 [*] BIQţational and translational mode simulation of Gas Flows, 1994.2



AMR (2/2) – Description of Nodes

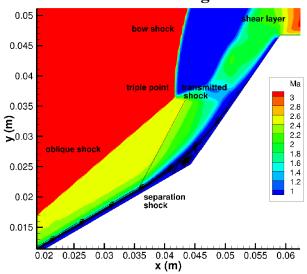
- A node is a computational cell.
- Once a cell is refined, a node is deactivated and 2^d (d=number of dimension) children nodes are created.
- Node without any child is a leaf; Node without any parent is a root.

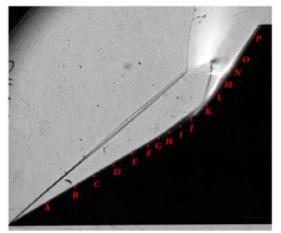
JPC, July 2013

Outline

- Introduction
 - Numerical Approach
 - Adaptive Mesh Refinement
 - Parallelization Strategies
 - Cut-cell Approach
 - Reflection and Optimization in MPI-Parallelized Domain
 - Heat Flux Computation
- Results
 - Argon Flow over Hemisphere
 - Argon Flow over Double-Wedge
 - Heat Bath Study of a Simple Gas
 - Nitrogen Flow over Hemisphere
 - Scalability Study
- Conclusion
- Future Work

Previous Work


- Double-Wedge simulations using SMILE by Tumuklu et al.
- Experiments on a the double-wedge by Austin et al.
- Adaptive Mesh Refinement
 - Pioneer Work, Berger et al(1989)
 - Kolobov et al(2012), within DSMC context
- SUGAR Framework (DSMC & PIC) applied to expansion cases by Korkut *et al* (2012).
- Present work focuses on simultaneous implementation of the above.

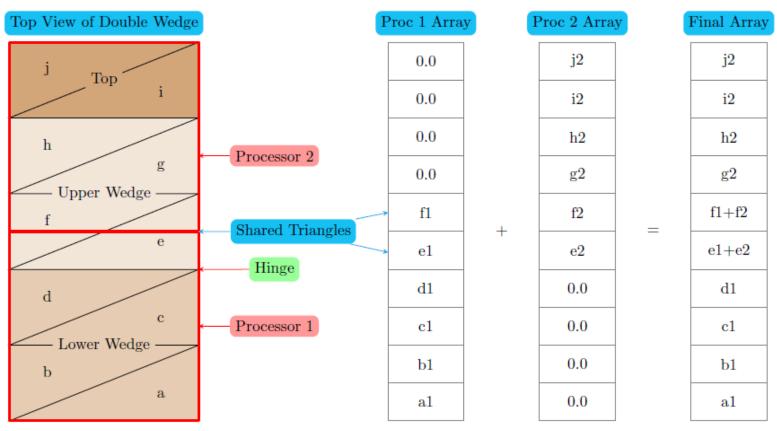

n

Shock interaction simulated by Tumuklu et al. using SMILE

Schlieren study performed by Swantek et

al.

- Flow over a double-wedge is challenging because of:
 - Multiple shock-shock, shock-boundary layer interactions
 - > Transition from laminar to turbulence
 - Three-dimensional effects
 - > Sheer layer
 - > Separation near the hinge
- These effects significantly impact aerothermodynamics of the flow such as pressure loads, heat transfer rate, and skin friction.
- Accurate prediction of these effects has direct application in scramjet inlet design.
- These cases are computationally expensive because of the multi-scale phenomena.
- Experiments have been performed in continuum-like conditions.


Role of Grids in DSMC

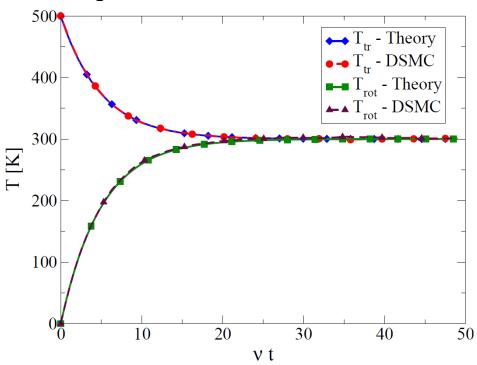
- Two essential grids
 - Collision Mesh (C-Mesh)
 - Particle pairs are selected for potential collisions and momentum and energies are modified accordingly.
 - Visualization Mesh (V-Mesh)
 - Distributions are calculated to obtain macro parameters such as velocity, temperature and density.
- A flexible mesh that can capture the domain in an efficient and flexible way.
- Previous efforts:
 - SMILE System: two-level Cartesian grid.
 - NASA's DAC: two-level rectilinear grid; adaptation based on previous flow solution.
 - MGDS: adaptive mesh refinement up to three levels of Cartesian grid.
 - MONACO: unstructured body-fitted quadrilateral/tetrahedral meshes.
 - dsmcFOAM (open-source): unstructured polyhedral meshes.
- Adaptive Mesh Refinement with unlimited refinement along with an emphasis on octal trees is a great choice to capture multi-scale physics.

Heat Flux Computation

How to compute heat flux of the triangles shared by processors?

Eg., a1= Coeff. of panel 'a' calculated by processor 1

Results


Case-III: Heat bath

- Serves the purpose of
 - validating the Borgnakke-Larsen continuous rotational relaxation model implemented in the SUGAR code.

wase-III – Heat Bath Study of a Diatomic Gas

Numerical Parameters	Value
Number Density	1.0E+20
FNUM	1.0E+11
Time step [s]	2.0E-05
Mass [Kg]	5.0E-26
S	3.5E-10
	1
Rotational Degrees of Freedom	2
Viscosity Index,	0.75
Rotational Number,	5
Timesteps for relaxation	100
Sampling Start	100
Number of Samples	900
Simulation Domain [m]	1 x 1 x 1

Temporal rotational relaxation

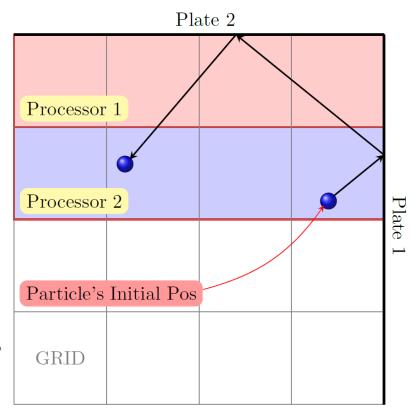
- Theoretical Expressions,
 - $T \downarrow tr = 300 + 200e \uparrow vt/$ $Z \downarrow r$
 - $T \downarrow rot = 300 \{1 e \uparrow vt/Z \downarrow r\}$

Boltzmann equation:

$$\frac{\partial f_1}{\partial t} = -\vec{q}_1 \cdot \frac{\partial f_1}{\partial \vec{r}} + \int d\vec{p}_2 \int d\Omega g \sigma(\theta, g) (f_1 \cdot f_2 \cdot - f_1 f_2)$$
= flux thru CV, Δ V1 + change due to collision in/out of CV

• The DSMC is a numerical method for solving the Boltzmann equation, under the assumption of a dilute, binary "gas":

Robust Cut-Cell Approach (1/3)


- The code reads in a triangulated surface geometry
 - STL format
 - Normal of surface triangles should point outward.
- Two main functions:
 - Geometric Sorting: Organizing list of triangles in leaves of Octree.
 - Intersection of cell edges with the triangles using signed tetrahedral volume approach.
 - Crude way: Checking each triangle with each leave cost O(M*N).
 - Efficient way: using the inherent recursion in tracing the leaves.
 - Volume Computation of a cell cut by the geometry
 - Accurate Volume local number density local mean free path refinement criteria for the C-Mesh physics near the geometry.
 - Accurate Volume collision frequency for the cell gas-surface interaction.
 - Formation of the part of the cut-cell lying in the flow domain (polyhedron formation).

* Algorithm is based on the implementation in DAC and MGDS code.* [*] Zhang, C. and Schwartzentruber, T. E., Robust Cut-cell Algorithms for DSMC implementations Employing Multi-Level Cartesian Grids," Journal of Computers and Fluids, Vol. 69, October 2012, pp. 122-135.

Gas-Surface Interaction (3/3)

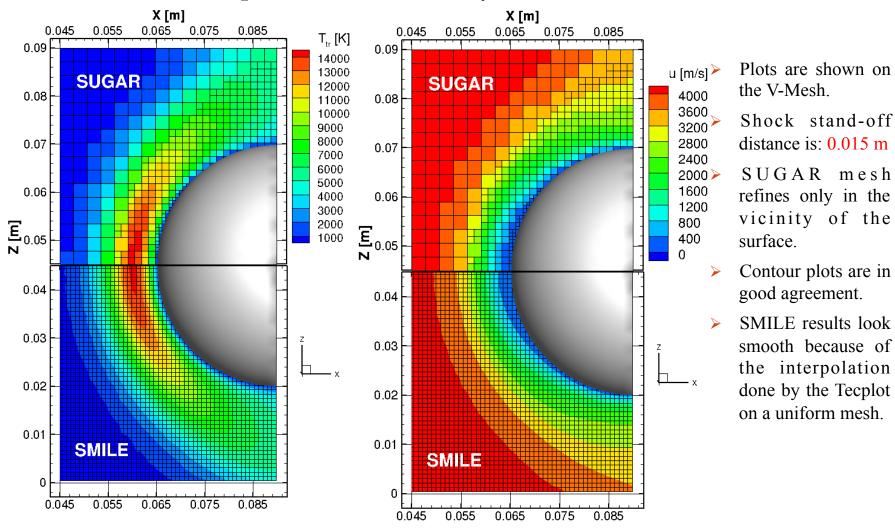
- Consideration during multiple reflections in a single timestep.
- Advantageous to broadcast the entire geometry to each processor at the start of the simulation.
- Saves communication efforts.
- In this case no communication is needed.

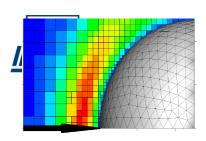
Verification and Validation Case 1: Argon over a Hemisphere

- Serves the purpose of validating
 - the DSMC procedure
 - elastic collision model (VHS)
 - majorant frequency scheme
- All the results are compared with the 3-D version of the SMILE code written in Fortran.
- These cases are run at a Knudsen number much higher than the actual experimental conditions.

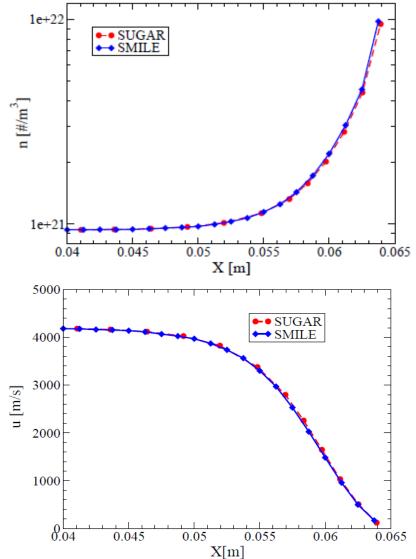
Case-I (1/3) – Input conditions

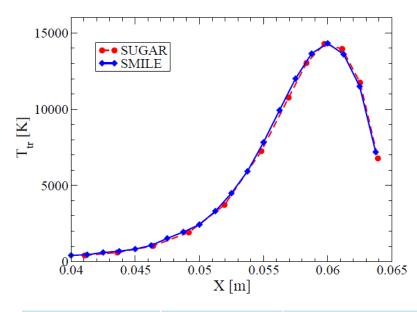
Parameters	Value
Number Density	9.33E+20
FNUM	0.25E+11
Freestream Temperature [K]	200
Freestream Velocity	4200
Time step [s]	5.0E-08
Accommodation coeff.	1
Surface Temperature [K]	200
Viscosity Index,	0.84
Number of Samples	12,000


- Mach 14 flow encounters a strong bow shock
- Knudsen number: 0.02



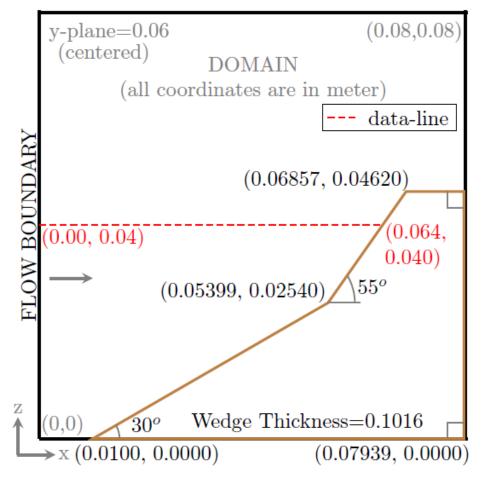
Case-I (2/3) - Contour Plots


Translational temperature


Velocity in X-direction

Case-I (3/3) – Line Plots and Observations

Observations	SUGAR	
Smallest Cell Size	7.0132E-04	9E-04
Number of Particles	12,709,000	17,608,704
Processors used	256	256
Sampling Time [min]	262	66



Case-I (1/3) – Input Conditions

Parameters	Value
Number Density	9.33E+19
FNUM	4.0E+09
Freestream Temperature [K]	200
Freestream Velocity	4200
Time step [s]	1.0E-07
Accommodation coeff.	1
Surface Temperature [K]	200
Viscosity Index,	0.74
Number of Samples	22000

- Mach 14 flow encounters a strong bow shock.
- Knudsen number: 0.2
- High Kn impose high non-equilibrium condition after the shock.

Case-II (1/5) – Problem Definition

Schematic of the Double-Wedge

- For encounters an oblique shock caused by the lower wedge and a bow shock formed by the upper wedge.
- Both the shocks meet at the triple point.
- Freestream conditions,
 Knudsen number and
 sampling period are the
 same as used for the case-I
 except for the FNUM,
 which is 0.25E+11.
- Knudsen number: 0.02

Conclusions

- Octree based DSMC approach proves to be advantageous for resolving small scales with relatively less computational efforts.
- The cut-cell approach gives the exact volume and even applicable where the split-cells are involved.
- The algorithm for improving particle-surface interactions gives efficiency of 38%.
- Broadcasting the geometry proves to be advantageous:
 - Saves communication in case of multiple reflections.
 - East in computation of surface coefficients in a MPI parallelized domain.
- The code is validated for accurate implementation of the DSMC method, majorant frequency, and elastic collision model by simulation the 14 Mach argon flow over a hemisphere.
- Preliminary results for the simulation of argon flow over a wedge successfully reproduced the flow characteristics such as an oblique and bow shock interaction.
- The code resolves the important regions near the surface of a double wedge.
- The code can accurately simulate diatomic gases using Borgnakke-Larsen continuous relaxation model.
- The code is slower than SMILE because of uneven load balancing caused mainly by the gas-surface interactions.
- The code is scalable.

Future Work

- Small spatial discrepancy in the nitrogen relaxation process in a flow over a hemisphere at Knudsen number 0.2 will be investigated in detail.
- The code will be applied to the cases involving continuum-like Knudsen number (0.0002) in a flow of nitrogen, argon, and air over a double-wedge configuration and compared with the SMILE and experimental results.
- Better relaxation models will be implemented.
- Better load balancing algorithm will be implemented that makes use of a graph-partitioner for domain decomposition.
 - Preliminary study done by Korkut et al. for an expansion case has shown promising results.
- Hybrid parallelization using OpenMP and GPUs is being explored for improving the performance and make use of new generation of computer architectures.