Title: Petascale Multiscale Simulations of Biomolecular Systems (PRAC sub-award)
Team Lead: Gregory A. Voth 12
Other Personnel: John M. A. Grime 2

Affiliation: 1Dept. of Chemistry, Institute for Biophysical Dynamics, James Franck
Institute and Computation Institute, University of Chicago, 5735 S.
Ellis Avenue, Chicago IL 60439
2 Computation Institute, Argonne National Laboratory, Lemont IL
60439

Introduction

Computational molecular dynamics!-4 (MD) with atomic levels of detail can
provide valuable insight into processes that are difficult to study with conventional
experiments. All-atom MD can be very computationally expensive, however, limiting
its utility when considering very large biomolecular systems. Coarse-grained (CG)
models instead use simpler representations of a target system, capturing the
essential physics while significantly extending the reach of computer simulations -
particularly where the effects of explicit solvent molecules (such as water in a
biological system) are instead approximated with an implicit solvent.

The application of CG models to cell-scale biological processes remains a
significant challenge, even with modern supercomputing resources. Calculating the
forces acting on a particular CG molecule may require information from several non-
local compute nodes, with the simulation unable to proceed until the required data
has arrived. The slowest compute node at each integration timestep thus limits the
overall performance of an MD simulation, and hence the ability to “load balance” is
of paramount importance for large-scale applications of implicit solvent CG models.

We present the design and initial performance characteristics of a CG-MD
simulation program designed specifically for cell-scale implicit solvent CG-MD
simulations. Although the motivation for the software lies in biomolecular
simulation, it is in principle widely applicable in the field of computational materials
science. Rather than simply reproduce existing MD algorithms, we instead explore
more unorthodox techniques to enable dynamic, scalable and memory-efficient
simulations at very large scales. LAMMPS?, a mature and well-established MD
archetype, is used as a reference code for performance comparisons.

1. Overview of the CG-MD software

The following discussion assumes basic knowledge of conventional parallel
MD algorithms as described by numerous standard texts 4.

1.1. Sparse molecular topologies

Given a global, explicit listing of all molecular connectivity in the system,
calculating local topological information is straightforward even as particles migrate
between nodes at runtime. Explicit global topology lists are convenient, but they are
also inflexible and waste resources; any local changes to the simulation content
must be propagated consistently into the global topology data and multiple
instances of the same basic molecule introduce redundant data, as each molecule
effectively repeats the same basic structure. In the interests of a more flexible and
efficient MD code, we eschew global topology lists to instead define connectivity
using template molecules.

A template molecule is an exemplar of a particular type of molecule in the
simulation that allows local topology to be inferred dynamically when particle data
references a template. Only a single copy of each template is required, regardless of
the actual number of molecules corresponding to that template. One immediate
advantage to such an approach is the significant reduction of complexity and size for
the simulation input files: for example, a system of 1 x 106 CG lipid molecules”
requires approximately 240 MB of disk space for the LAMMPS MD code. The size of
this global topological listing increases as a monotonic function of the number of CG
lipids in the simulation. The same topological description requires approximately
350 bytes in the CG-MD code, with this information valid for any number of CG
lipids.

Template molecules enable highly dynamic simulation contents, providing a
simple method of altering molecular topologies in response to local environmental
conditions and allowing straightforward addition and removal of molecules at
runtime. These operations are significantly more complicated when using a global
topology list.

1.2. Sparse spatial data structures

The calculation of nonbonded interactions in an MD simulation typically uses
Verlet lists® generated with a link cell algorithm!. Conventional link cell approaches
require memory proportional to the simulated volume, and therefore proportional
to a cubic function of a characteristic local domain length L. For cell-scale
simulations, where L may be on the order of microns or more, link cell memory
overheads can be non-trivial. A simple example is shown in Fig. 1, where the
memory required for a single-particle simulation using the LAMMPS MD code is
plotted as a function of L (red curve). Although the simulation described by Fig. 1 is
almost totally empty, the memory overhead becomes very large as L increases.

* Assuming a CG lipid is composed of five CG particles, four covalent bonds and three valence angles

Single particle simulation, ro,; = 1.2 nm

LMP —
CG
15

30

Q2 g
S 10 b

—
0

M/GB

0.5 1

L/nm

0 (=

,
0 25 50 75 100 |

0 01 02 03 04 05 06 07 08 09 1

L/um

Figure 1: Memory use vs simulation box
length L for a single-particle system in
LAMMPS (red curve) and the CG-MD code
(green curve). All data are single-CPU runs
with reue = 1.2 nm. Truncation of LAMMPS

curve at L # 0.45 pm indicates onset of paging

to virtual memory, destroying performance.

The CG-MD code uses a “sparse” link
cell algorithm to avoid this behavior (Fig.
1, green curve). For cell-scale CG-MD
simulations with implicit solvent, relatively
large regions of the simulated volume may
be effectively empty. Rather than fill the
simulated volume with link cells,
regardless of whether they are occupied,
we instead use a data structure that maps
an integer triplet (the lattice coordinates of
an occupied link cell) to the list of particles
contained in the link cell. The sparse link
cell map therefore uses no memory for
empty regions of space, and is regenerated
immediately prior to Verlet list rebuilds,

thus decoupling link cell memory requirements from simulation volume (Fig. 1).
This technique enables implicit solvent CG simulations of very large volumes in a

memory efficient manner.

1.3. Load balancing

Traditional parallel MD algorithms divide the total simulated volume into
subdomains>7:8, with calculations inside a subdomain assigned to a specific compute
process (hereafter referred to as a “node” of the CG-MD simulation). The
subdomains are typically arranged as stacked parallelepipeds for simple
organization and communication, for example when sharing particle information

across subdomain boundaries.

If a uniform distribution of particles
exists throughout the entire simulated volume,
basic load balancing naturally emerges from
splitting the total volume into uniform
subdomains (Fig. 2 a). For simulations with
pronounced local density variations, such as CG
models with implicit solvent, uniform domain
decomposition can produce serious load
imbalances. A simple example of this
phenomenon is shown in Fig. 2 b, where CG
particles have aggregated to produce a large
empty region and local high-density clusters. In
this situation, many nodes may be idle while
most of the MD workload is performed by a
relatively small number of nodes - to the
obvious detriment of simulation performance.
One possible solution is to adjust the dividing
planes that delineate subdomains’, retaining the
basic stacked parallelepiped organization but
altering the volume (and hence, the number of

a b
e o @ @ ;'.’
)
e e @ o o8
e @ @ o
e @
e @ @ o % .
c d

Q
- Q

Figure 2: 2-D spatial decomposition
using four CPUs. Uniform particle
distributions are simple to load balance
with equal subdomains (a), but non-
uniform distributions produce load
imbalance (b). A Hilbert SFC (c, notional
lattice spacing as horizontal bar) divides
the system into sections of roughly equal
particle counts (d, sections separated for
clarity).

particles) contained in each subdomain. More exotic schemes may further partition
the local subdomain calculations into independent work units8. We instead load
balance on the basis of a Hilbert space-filling curve (SFC).

A detailed description of the mathematics of space filling curves is beyond
the scope of this work, and the curious reader should consult more specialized
texts?10, The Hilbert SFC converts higher dimensional coordinates into 1-D SFC
indices that preserve locality: if two particles are local in 3-D Cartesian space, their
1-D SFC indices are likewise proximate. Hilbert SFC vertices connect the centers of a
notional lattice of cells (Fig. 2 c¢), and by mapping particle coordinates into these
cells the SFC can be divided into contiguous sections containing approximately
equal numbers of particles (Fig. 2 d). SFC sections (and hence the spatial volumes
defined by each section) may then be dynamically assigned to specific nodes,
allowing runtime load balancing of MD calculations.

1.4. Communications

Sections of a Hilbert SFC can describe subdomains with very irregular
boundaries. Dynamic assignment of SFC sections requires an equally dynamic
approach to inter-node communications, for example in the sharing of “ghost”
particle information for calculating molecular forces, as nodes can no longer rely on
an invariant and regular arrangement of neighboring subdomains. By setting the
notional Hilbert SFC lattice spacing to be = rc., each node may generate an internal
list of the remote nodes with whom communication is required by periodically
n L n mapping local particle coordinates into SFC cells, and

I J detecting any SFC cells which require the sharing of
O |

particle information (see Fig. 3).

[t is important to note that although the approach
in Fig. 3 allows a node n; to detect the need to share
information with a node nj, nj does not automatically
m know to listen to n; for incoming data. The use of MPI
“collective” communications to share such
information was found to be inefficient for large
node counts Npoges, and instead remote memory
access (RMA) via the DMAPP interface of Cray’s

n. | n| n

Figure 3: 2-D illustration of the
dynamic communication
mapping as described in the text.
The notional 3x3 set of Hilbert
SFC cells (highlighted) that

surround a real particle in the
local domain of node n; are
examined, and some cells are
found to lie in the domains of
nodes nj-m. Information regarding
this particle will therefore be
shared with those nodes. Node
domain boundaries are solid
lines, SFC cells dashed lines.

Gemini network hardware was used. Each node
exposes a local memory array of Nyodes integers for
RMA operations, and where n; detects the need to
share data with n; then n; writes a value of 1 directly
into element i of nj's exposed memory array. It is
then straightforward for nodes to detect emerging
communication patterns by examining their local

memory arrays and detecting the nonzero elements that indicate the need to
communicate with a particular remote node.

The dynamic communications mapping approach leads naturally to efficient
single-pass sharing of particle data with asynchronous point-to-point routines. This
is in contrast to algorithms that may require several communications “sweeps” on

each Cartesian axis >7. The effects of communication latency can be reduced by
maintaining two sets of Verlet lists on each node: the first set contains only
interacting pairs of local particles, and the second contains interacting pairs which
feature ghost particles. Nonbonded interactions between local real particles (which
require no remote data to be received) can then be evaluated while waiting for
ghost particle information to arrive from any remote data sources.

Inter-node communication in the CG-MD code is thus decoupled from any
particular spatial arrangement of subdomains, providing automatic and highly
dynamic runtime detection of emerging communication patterns. It is therefore
possible, for example, to insert a completely new local molecule into the simulation
and have this molecule automatically be split and distributed across the appropriate
compute nodes even when the molecule spans multiple subdomains with no shared

borders.

2. Initial performance testing

The test simulation consists of a model CG lipid bilayer membrane (BLM) of
dimensions 1 um x 1 um, accompanied by two spherical BLMs of diameter 125 nm
to provide a total system size of ~15.6 x 10¢ CG particles. (Fig. 4). Systems of this
type have direct biological relevance in the context of e.g. the HIV viral lifecycle or
chemical synapses!l. The test simulation was executed on a range of 128 to 8192
compute nodes on the Blue Waters facility using 1, 4, 8 and 16 MPI ranks per
compute node. Although Verlet lists and nonbonded interactions (via the Lennard-
Jones 12-6 potential) were calculated in these simulations, the resultant nonbonded

125 nm bilayer vesicle at (2500, 2500, 0)

/

. 125 nm bilayer vesicle
' at(-2500, 725, 0)

O

1 um x 1 um planar bilayer

| r
R
cte |

Figure 4: [llustration of the system as
described in the main text. Upper
panel: two spherical bilayer
membranes (BLMs) are positioned
aboveal umx 1 um planar BLM.
Lower panel: VMD snapshot of the
region containing the planar BLM (1)
and the two spherical BLMs (2 and 3).
Area per lipid is 70 A2 for all BLMs.
Periodic simulation cell is 1 pm x 1 pm
x 1 um, with reee = 2.0 nm.

forces were not used in the integration of the
equations of motion: this approach allowed
identical trajectories to be generated both in the
presence and absence of Verlet list generation
and nonbonded force calculations, providing a
direct measurement of the true influence on
runtime performance of the communications
routines and the nonbonded force calculations
(with the latter typically the most time
consuming part of an MD simulation).

Fig. 5 presents CG-MD code performance
data as a function of CPU core count. Impressive
“strong” scaling behavior is observed (Fig. 5 a),
with scaling performance dropping below 85%
of ideal only at ~131,000 CPU cores (where the
CG-MD code is executing MD timesteps every
~1.6 milliseconds). One interesting aspect of Fig.
5 a is the presence of two effectively separate
curves; the first curve features assignments of
one, two and four MPI processes per compute
node with the second curve containing eight and
16 MPI processes per compute node. This
separation reflects the Blue Waters hardware,

CG-MD raw simulation time CG-MD MPI overhead CG-MD (raw time) - (MPI overhead)

1
4 —
8 —
16

CPU cores CPU cores CPU cores

Figure 5: Raw simulation time required for 1000 MD steps of the test simulation as a function of CPU core
count (a), the times for identical simulations in the absence of Verlet list generation and nonbonded force
calculations (b), and the difference between (a) and (b) is shown in (c). Line color indicates MPI ranks per
compute node, with ideal scaling (lower dashed line) and 85% of ideal scaling (upper dashed line) shown. Raw
time for 128 CPU cores is indicated by the red arrow, 131,072 CPU cores with a blue arrow.

as more than four MPI ranks per compute node requires the sharing of L3 cache
memory with noticeable performance effects. Fig. 5 b depicts the time required for
identical simulations in the absence of Verlet list generation and nonbonded force
calculations and therefore indicates the general MPI communications overhead
(bond and angle forces contribute < 5% of these times). From this figure we observe
that the limiting factor for the scaling of this system is actually MPI communications
overhead. This overhead is mainly asynchronous point-to-point communications
rather than MPI collective communications. Fig. 5 ¢ shows the raw simulation times
with the MPI overhead subtracted, with the Hilbert SFC shown to provide excellent
load balancing performance over at least three decades of logarithmic CPU core
counts, even for such an extremely heterogeneous CG system. Note that this testing
involves a relatively small system using a computationally inexpensive Lennard-
Jones 12-6 pair potential, and the CG-MD code can use much larger CPU core counts
if given larger/denser systems or more expensive interaction potentials.

CG-MD and LAMMPS performance CG-MD relative performance vs LAMMPS Memory use
: - 30x 1= 140 . 1 —
4 — 4
25x 8 — 1 120 | % 8 —
16 - 100 4 16
L i m r
20x N/ S
15% | g
g
10x =
B5x
(b)
OX 2 L L 4 L 1 4 I
10 10° 10 10° 10 10°
CPU cores CPU cores CPU cores

Figure 6: Performance of the CG-MD code (solid lines) and LAMMPS (dashed lines) for the same system and
CPU core arrangements, with ideal and 85% of ideal scaling shown for both data sets (a); CG-MD performance
relative to LAMMPS (b); CG-MD memory usage compared to that of LAMMPS (c).

Fig. 6 compares the performance of the CG-MD code to LAMMPS for the test
simulations. In the absence of load balancing, LAMMPS is unable to achieve 85%
scaling efficiency for any CPU core count above the initial 128 cores (Fig. 6 a);

although a load balancer has recently been added to LAMMPS, this load balancer
halted on simulation startup with an error message for this system. The CG-MD code
becomes progressively faster compared to LAMMPS as the CPU core count is
increased (Fig. 6 b) until MPI communication overheads begin to hinder this
increase in relative performance for the largest core counts. In all cases, CG-MD code
memory use is significantly less than that reported by LAMMPS (Fig. 6 c).

3. Conclusions and future work

The CG-MD code displays excellent performance for CG systems with
extremely heterogeneous particle distributions, limited only by the overheads of
MPI’s point-to-point communication routines for very high speeds at large CPU core
counts (~1.6 ms per MD timestep at 130,000+ cores). Alongside the sparse memory
characteristics and dynamic topological calculations, the CG-MD code therefore
offers a platform for entirely new classes of dynamic cell-scale molecular
simulations using CG models with implicit solvent. The Hilbert SFC load balancer
concentrates the MD calculations very effectively over the available compute
resources, and should therefore perform well in combination with GPU accelerated
calculations. One potential avenue of investigation to reduce the MPI overhead is to
replace the appropriate MPI point-to-point routines with calls to entirely hardware-
native APIs such as DMAPP, at the cost of some additional complexity and
portability considerations in the CG-MD software.

References

1 Allen, M. P. & Tildesley, D.]. Computer simulation of liquids. (Clarendon, 1987).

2 Frenkel, D. & Smit, B. Understanding molecular simulation : from algorithms to applications. 2nd ed. edn,
(Academic, 2002).

3 Leach, A. R. Molecular modelling : principles and applications. 2nd ed. edn, (Prentice Hall, 2001).

4 Rapaport, D. C. The art of molecular dynamics simulation. 2nd ed. edn, (Cambridge University Press,
2004).

5 Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics.] Comput Phys 117, 1-19,
doi:Doi 10.1006/Jcph.1995.1039 (1995).

6 Verlet, L. Computer "Experiments" on Classical Fluids. 1. Thermodynamical Properties of Lennard-
Jones Molecules. Phys Rev 159, 98-103, doi:10.1103 /PhysRev.159.98 (1967).

7 Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-
balanced, and scalable molecular simulation.] Chem Theory Comput 4, 435-447, doi:Doi
10.1021/Ct700301q (2008).

8 Phillips,]. C. et al. Scalable molecular dynamics with NAMD.] Comput Chem 26, 1781-1802, doi:Doi
10.1002/Jcc.20289 (2005).

9 Lawder,]. The application of space-filling curves to the storage and retrieval of multi-dimensional data,
1999).

10 Lawder, . K. & King, P.]. H. Querying multi-dimensional data indexed using the Hilbert space-filling
curve. Sigmod Record 30, 19-24 (2001).

11 Hu, Y. M,, Qu, L. & Schikorski, T. Mean Synaptic Vesicle Size Varies Among Individual Excitatory

Hippocampal Synapses. Synapse 62, 953-957, doi:Doi 10.1002/Syn.20567 (2008).

