
Programming for the Next Decade
(Perspectives from a Systems Architect)

Steve Scott
Cray CTO

Blue Waters Symposium

May 12, 2015

“Each year the questions remain the
same, only the answers change.”

Jim Goodman
University of Wisconsin

2
Copyright 2015 Cray Inc.

•  ECL 5/4 NAND
 gate ICs (95%)

•  75K gates. (3400 PCBs!)

•  RISC design

•  Vector ISA

•  Memory latency 11 clocks

Cray 1, 1976
Intel Pentium, 1993

•  CMOS VLSI IC

•  3M transistors

•  CISC design

•  Deep pipelines,
complex predictions

Intel Pentium 4 Cedar Mill, 2006

•  184M transistors!

•  Very CISC design

•  31-stage pipeline

•  3.6 GHz in 65nm
•  Last of its breed….

3
Copyright 2015 Cray Inc.

20mm

64-bit DP

28nm IC

20 pJ

16mm die

Post Dennard Scaling and the Power Wall
(2005 onward)

 Voltage no longer drops with feature size
⇒  perf/W/year has slowed dramatically (70% è 20% CAGR)

⇒ Have become power constrained

180nm (2000)
130nm (2002)
90nm (2005)
65nm (2007)

45nm (2009)
32nm (2011)

20nm (2013)
1 nJ

256-bit access
8 kB SRAM 50 pJ

16 nJ DRAM Rd/Wr

500 pJ Efficient off-chip
link

26 pJ 256 pJ

256
bits

Signal reach dropping:
Communication much more
expensive than computation

4
Copyright 2015 Cray Inc.

Architectural Response
1) Stop making it worse...

Multicore CPUs

3) Unwind all that complexity we threw at single thread performance
 (reclaim the lost performance/W potential)

But still only a
tiny fraction of

CPU power spent
on flops

2) Continue to innovate in circuits (e.g.: low voltage SRAMs)

5
Copyright 2015 Cray Inc.

New Processor Landscape

GPU computing (Nvidia Kepler)
Lots and lots of much simpler processors

Vectors are back!
(Intel Xeon Phi)

Parallelism with
low complexity and
control overhead

Small Mem
Large

Memory

Serial
Optimized

Parallel
Optimized

Large
Memory

Serial
Optimized

Small Mem

Parallel
Optimized

Large Memory

Parallel
Opt.

Ser.
Opt.

“Large-Enough”
Memory

6
Copyright 2015 Cray Inc.

Power-Efficient Networks
●  Cray pioneered the use of high radix routers in HPC

●  Became optimal due to technology shift
●  Pin bandwidth growing relative to packet length
●  Reduces serialization latency of narrow links

●  Reduced network diameter (number of hops)
●  Lowers network latency and cost

●  But higher radix network require longer cable lengths
●  Limits electrical signaling speed

●  Advent of cost-effective optics allows longer cable lengths
●  Optics are now cost effective above a few meters (and dropping)
●  Cost, bandwidth and power are relatively insensitive to cable length

●  Current and future Cray systems based on hybrid, electrical-optical networks
●  Cost-effective, scalable global bandwidth
●  Very low network diameter (small number of hops) ⇒ very energy efficient

64 port YARC router
in Cray X2

7
Copyright 2015 Cray Inc.

Summary of Future Machines
●  Computers are not getting faster…

●  Vertical locality much more important than horizontal locality

just wider

Dimension Latency Hit Bandwidth Hit Energy Hit
Within node ~200x ~200x > 500x

Across nodes ~25x ~8x ~5x
* If include local NVM, within node grows, across nodes shrinks

●  Parallelism is multi-dimensional (and heterogeneous?)
●  Vectorization + threading + multi-node
●  Processors optimized for serial performance or power efficiency (not both)

●  O(EF) with O(GHz) clocks à O(B) way parallelism!

●  Interconnects won’t look that different than today

9
Copyright 2015 Cray Inc.

Implications for Programmers

●  Must move to more threading on the node
●  All-MPI won’t deliver maximum performance

●  Must vectorize low-level loops
●  8-30x performance improvement on array operations

●  Must avoid scalar code
●  On “accelerated” nodes, creates traffic between accelerator and host,

 or runs 3-4x slower than on a serial-optimized core
●  Inherently slower and less power-efficient

●  Must pay a lot more attention to locality within node
●  Think about data placement and movement
●  Consider “sub-optimal” algorithms that limit data motion

Copyright 2015 Cray Inc.

Would like to code for future machines
in a portable way
●  Spatial and Temporal Portability

●  Separation of labor
●  Programmer exposes parallelism and locality
●  Compiler, tools, and runtime map onto specific hardware
●  Optimized libraries for various platforms

Future
processors

11
Copyright 2015 Cray Inc.

●  Future HPC Programming Model: MPI + OpenMP
●  Can we make this easier?

●  Threading, vectorization, data placement

●  Recent poll at NERSC found 80% of apps use single level of
parallelism

●  Why & when to convert to hybrid programming model?
●  When code becomes network bound
●  Load balancing and synchronization overheads become large
●  Excessive memory used by straight MPI
●  To take advantage of hybrid compute nodes

Bold Prediction:

12
Copyright 2015 Cray Inc.

Approach to Adding Parallelism

13

1.  Identify key high-level loops
●  Determine where to add additional levels of parallelism

2.  Perform parallel analysis and scoping

3.  Add OpenMP layer of parallelism
●  Insert OpenMP directives

4.  Analyze performance for further optimizations
●  Specifically vectorization of inner loops

Copyright 2015 Cray Inc.

Which of these profiles display what is important?
 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE

 100.0% | 1.545303 | -- | -- | 721995.0 |Total
|---
| 84.7% | 1.308232 | -- | -- | 721990.0 |USER
||---
|| 20.6% | 0.317597 | 0.067854 | 17.9% | 276480.0 |parabola_
|| 9.8% | 0.151749 | 0.024599 | 14.2% | 30720.0 |riemann_
|| 8.7% | 0.134020 | 0.214959 | 62.6% | 20.0 |sweepy_
|| 8.6% | 0.133213 | 0.057049 | 30.5% | 10.0 |sweepz_
|| 8.1% | 0.125045 | 0.028330 | 18.8% | 30720.0 |remap_
|| 4.9% | 0.075581 | 0.085175 | 53.8% | 10.0 |dtcon_
|| 3.4% | 0.052096 | 0.012666 | 19.9% | 61440.0 |paraset_
|| 3.2% | 0.049156 | 0.010650 | 18.1% | 30720.0 |evolve_
|| 3.1% | 0.048344 | 0.013154 | 21.7% | 92160.0 |forces_
|| 3.1% | 0.047601 | 0.013329 | 22.2% | 92160.0 |volume_
|| 2.6% | 0.040902 | 0.008664 | 17.8% | 15360.0 |ppmlr_
|| 2.1% | 0.032670 | 0.007914 | 19.8% | 30720.0 |states_
|| 1.8% | 0.027902 | 0.006195 | 18.5% | 30720.0 |flatten_
|| 1.6% | 0.024737 | 0.005826 | 19.4% | 30720.0 |boundary_
|| 1.1% | 0.017032 | 0.016742 | 50.4% | 2.0 |vhone_
|| 0.8% | 0.013135 | 0.004581 | 26.3% | 10.0 |sweepx1_
|| 0.6% | 0.009817 | 0.004406 | 31.5% | 10.0 |sweepx2_
|| 0.5% | 0.007235 | 0.009223 | 56.9% | 2.0 |init_
|| 0.0% | 0.000399 | 0.000207 | 34.7% | 6.0 |grid_
||===

Typical profile showing exclusive wall-time

 Time% | Time | Calls |Calltree

 100.0% | 1.545303 | -- |Total
|--
| 100.0% | 1.545303 | 2.0 |vhone_
||---
|| 83.1% | 1.283566 -- |vhone_.LOOP.2.li.205
|||--
3|| 22.8% | 0.352952 | 20.0 |sweepy_ ç SWEEPY 22.8% of inclusive time
||||---
4||| 14.2% | 0.218932 | -- | sweepy_.LOOP.1.li.32 ç High level grid loop
5||| | | | sweepy_.LOOP.2.li.33 ç High level grid loop
6||| 14.2% | 0.218932 | 2560.0 | ppmlr_
|||||||--
7|||||| 5.8% | 0.089807 | 5120.0 |remap_
||||||||---
8||||||| 3.4% | 0.052046 | 30720.0 |parabola_
8||||||| 1.8% | 0.028345 | 5120.0 |remap_(exclusive)
8||||||| 0.4% | 0.006467 | 5120.0 |paraset_
8||||||| 0.2% | 0.002949 | 5120.0 |volume_
||||||||===
7|||||| 3.0% | 0.047088 | 5120.0 |riemann_
7|||||| 1.7% | 0.026442 | 15360.0 |parabola_
7|||||| 1.4% | 0.021188 | 5120.0 |evolve_
||||||||---
8||||||| 0.7% | 0.010535 | 5120.0 |evolve_(exclusive)
8||||||| 0.4% | 0.005505 | 10240.0 |forces_
8||||||| 0.3% | 0.005147 | 10240.0 |volume_

^ Nesting level everything below 3 is called by 3

14
Copyright 2015 Cray Inc.

Simplifying the Task with Reveal

May 2015 Copyright 2015 Cray Inc.

●  Navigate to relevant loops to parallelize

●  Identify parallelization and scoping
issues

●  Get feedback on issues down the call
chain (e.g.: shared reductions)

●  Shows vectorization and other compiler
optimizations

●  Optionally insert parallel directives into
source

●  Validate scoping correctness on
existing directives

15

Data Management in the Memory Hierarchy

16

●  Two levels of interest:
●  Memory hierarchy accessed as memory

 (caches, HBM, DDR4, NVM, remote SSD?)
●  Network attached NVM that is accessed as storage

●  At each level, want a dual approach
●  APIs, directives, and tools for users to manage/access data
●  System software to automatically manage the memory

CPU
(on-chip caches)

Memory
(DRAM)

Storage
 (HDD)

CPU
(on-chip caches)

Near Memory
 (HBM/HMC)

Mid Storage
(SSD)

Far Memory
(DRAM)

Far Storage
(HDD)

On Node

Off Node

On Node

Off Node
Data-Centric Code Optimization

User Simulation

DSL

openDC
implementation

DCA

C/F Compiler

C/Fortran
Implementation

dcRT

Abstract
Machine
(HWLOC)

Kokkos
Raja
TiDA
HTA
Legion

Near Storage
 (NVDIMM)

Copyright 2015 Cray Inc.

Big Data vs. HPC

|| &&
Common Needs:
●  Compute power
●  Interconnect bandwidth
●  Memory capacity & bandwidth
●  Storage system capacity & bandwidth
●  Workload management

●  Scaling
●  Resiliency
●  Visualization
●  System management
●  etc.

18
Copyright 2015 Cray Inc.

A Matter of Balance

Network
Bandwidth

Compute

File System
Capacity & Bandwidth

Memory
Capacity

& BW

We have these same trade-offs within HPC

19
Copyright 2015 Cray Inc.

May lean towards larger memories, and more network & storage bandwidth

Supercomputers
&

Analytics
Solutions

Public &
Private Clouds

Enabling More Complexity & Capability…
Big Data à Fast Data

Global
Memory
+ Fast

Interconnects

Fast Data

SAN
Interconnects

Enterprise

Data
(structured)

GRID

Big Data

CLOUD

LAN/WAN
Interconnects

20
Copyright 2015 Cray Inc.

I’ve Looked at Clouds from Both Sides Now

21
Copyright 2015 Cray Inc.

System Monitoring and Operational Analytics

22

Currently collect logs in multiple places
●  SMW, SDB & login nodes, Lustre service nodes

Types of data:
●  Network health
●  Console traffic (node-level OS errors)
●  Temp, power, perf & status of all components
●  Job scheduling and placement information
●  Job performance data
●  File system and network logs
●  Etc.

Hard to diagnose performance problems or failures
●  SSA is a first step…

Analytics
Appliance

•  Predictive failure analysis
•  Job failure/performance

diagnosis
•  Cyber-threat detection
•  System optimization

•  Power management
•  Job scheduling and

placement
•  IO and network

configuration
•  Proactive detection of

performance issues
•  System dashboards

Copyright 2015 Cray Inc.

Copyright 2015 Cray Inc.

Protein Folding – Mixed Simulation and Analytics

●  Focuses on how protein folding happens
●  Model possible paths to folded end-state
●  Temporal resolution matters, but drives data size

Markov State
model of a fold

Model

Data

geometry

biology

physics

variables
of interest

to create
the model

to drive
the simulation

to compare with
simulation results

input
conditions

solution
process

solved variables
of interest

Simulation

Copyright 2015 Cray Inc.

Protein Folding – Mixed Simulation and Analytics

Model

Data

geometry

biology

physics

variables
of interest

to create
the model

to drive
the simulation

to compare with
simulation results

input
conditions

solution
process

solved variables
of interest

Simulation

Automated classification in protein databases

(a)

� � � � ő 1

� ��� ��� ��� ��� ő ����

� ��� ��� ��� ��� ő ���

� ��� ��� ��� ��� ő ���

� ��� ��� ��� ��� ő ���

ő ő ő ő ő ��� ő

1 ���� ��� ��� ��� ő ���

(b)

� � �

� ��� ��� ���

� ��� ��� ���

� ��� ��� ���

� ��� ��� ���

ő ő ő ő

1 ��� ��� ���

[\]

(c)

Figure 1: One conformation of the villin HP-35 protein (a); part of its distance matrix using only its backbone atoms in
the conformation (b); and three eigenvectors and the associated eigenvalues capturing and synthesizing the conformation

geometry (c).

III. METHODOLOGY

Our method involves three steps. Given a trajectory
composed of frames generated in a distributed fashion
and containing up to 400 consecutively folding protein
conformations, our method first extracts relevant features
from each conformation into a local metadata representation.
In our case, the relevant feature is the local knowledge
on the geometric conformation of the protein structure.
Second, the method maps each conformation to either a
meta-stable or a transition stage using the local knowledge
on the conformational features of the structures in the frame
only. Finally, the method rebuilds the global knowledge
(i.e., stages and conformation space explored) of the given
trajectories through a reduction operation.

A. Extraction of conformational features

Our method extracts the shape of each single folding
conformation into a metadata representation that preserves
the relevant information contained in the data but reduces the
overall data size. Rather than working with the atom coordi-
nates of the complete protein molecule, our method first rep-
resents each protein conformation using an N ⇤N distance
matrix (DM), where N is the number of backbone carbon
atoms in the protein (i.e., the alpha carbon of each amino
acid). More specifically, the matrix contains the distance
from each backbone atom to the other backbone atoms in the
same protein conformation. Figure 1(a) shows an example
of a folding conformation for the protein HP-35 NleNle
(i.e., a variant of the villin headpiece subdomain) taken
from folding trajectories generated by Folding@Home [9].
Figure 1(b) shows part of the corresponding distance matrix
representing the same conformation in a different format.
The representation of each protein conformation is trans-
formed from a set of 3 ⇤M floating point numbers (where
3 identifies the coordinates in the Cartesian space of each

atom, and M is the number of atoms in the entire protein,
with M > N) to a N ⇤N matrix of floating point numbers.

Once the method has mapped each conformation to a
distance matrix, it applies classical multidimensional scaling
(MDS) to each distance matrix separately. MDS reduces the
N ⇤N symmetric distance matrix into a lower dimensional
matrix while maintaining the original information on the
protein conformation (i.e., the distance of each backbone
atom to all the other backbone atoms). Because of simplicity
and ease of human interpretation, we applied MDS to reduce
the data dimensionality to a N ⇤ 3 matrix. MDS also
generates a set of three N ⇤ 1 column vectors (q1, q2, q3),
and each eigenvector comes with its eigenvalue (�1,�2,�3).
Each eigenvalue represents the amount of variations in the
data associated to the corresponding eigenvector [10]. In
this case we use the information contained in the leading
eigenvalues to summarize the conformational features of the
protein at a given time in the folding process. Thus, we
are able to reduce the protein dimensionality into a single
point in the 3-D Euclidean space. In other words, the three
eigenvalues represent the variance or curves of the backbone
atoms with respect to each other in the protein’s alpha-
helices or beta-sheets. Figure 1(c) shows the three eigenval-
ues and eigenvectors obtained for the matrix in Figure 1(b).
The figure also shows the reduced representation of the
protein conformation into the 3-D point. In summary, the
method maps each protein conformation from 3 ⇤M atom’s
coordinates to 3 ⇤ 1 floating point numbers. It performs the
mapping for each conformation in a frame separately from
the other mapped conformations in a concurrent manner.

B. Classification of meta-stable and transition stages

As the folding evolves, the protein changes between
meta-stable and transition stages. Each frame composing a
trajectory may contain up to 400 protein conformations that
can be clustered into one or more of these two stage cate-

Enabling in-situ data analysis for large protein-folding trajectory datasets

Boyu Zhang⇤, Trilce Estrada†, Pietro Cicotti‡, Michela Taufer⇤
⇤University of Delaware
{bzhang, taufer}@udel.edu
†University of New Mexico

{estrada}@cs.unm.edu
‡San Diego Supercomputer Center

{pcicotti}@sdsc.edu

Abstract—This paper presents a one-pass, distributed

method that enables in-situ data analysis for large protein-

folding trajectory datasets by executing sufficiently fast, avoid-

ing moving trajectory data, and limiting the memory usage.

First, the method extracts the geometric shape features of

each protein conformation in parallel. Then, it classifies sets

of consecutive conformations into meta-stable and transition

stages using a probabilistic hierarchical clustering method.

Lastly, it rebuilds the global knowledge necessary for the intra-

and inter-trajectory analysis through a reduction operation.

The comparison of our method with a traditional approach for

a villin headpiece subdomain shows that our method generates

significant improvements in execution time, memory usage,

and data movement. Specifically, to analyze the same trajec-

tory consisting of 20,000 protein conformations, our method

runs in 41.5 seconds while the traditional approach takes

approximately 3 hours; uses 6.9MB memory per core while

the traditional method uses 16GB on one single node where

the analysis is performed; and communicates only 4.4KB while

the traditional method moves the entire dataset of 539MB. The

overall results in this paper support our claim that our method

is suitable for in-situ data analysis of folding trajectories.

I. INTRODUCTION

Protein folding simulations search for trajectories leading
to conformations close to the native (folded) protein struc-
ture originating from an unfolded conformation. During the
folding process, the protein changes its conformations into
what are called meta-stable and transition stages. In a meta-
stable stage, consecutive protein conformations have similar
geometric shapes and thus display small structural variations.
In a transition stage, consecutive protein conformations
change from one meta-stable stage to another and thus
exhibit large structural variations.

The study of folding trajectories includes intra-trajectory
analysis, which aims to identify meta-stable and transition
stages, and inter-trajectory analysis, which studies the abil-
ity of multiple trajectories to explore overlapping folding
space and eventually converge to the same conformation.
Traditionally, both intra-trajectory and inter-trajectory anal-
ysis methods follow a centralized approach that moves the
trajectory datasets to one centralized node and processes
the data only after the simulations are complete. There
are three major drawbacks to the use of these approaches.

First, the data movement puts an increasing pressure on
the network and I/O system and becomes the bottleneck
for performance and scalability. Second, to build the large
centralized dissimilarity matrix, the method may require
more memory storage than the centralized node has. Third,
the analysis done after the whole simulation finishes follows
the assumption that it is known a priori when the folding
protein is close to its native conformation and the simulation
can be terminated. This assumption does not always hold
true in real folding simulations.

To overcome these limitations, the analysis itself should
be performed in-situ by meeting the following requirements:
executing sufficiently fast, avoiding moving trajectory data,
and limiting the memory usage. In this paper, we propose
a novel method that enables in-situ analysis because it
meets these requirements. Therefore, it can be used for
intra-trajectory and inter-trajectory analysis efficiently. The
method includes three steps. The first extracts geometric
conformation shapes using local data only, while reducing
the storage space needed for the part of the trajectory
under consideration. The second classifies the local frame
into meta-stable and transition stages using a probabilistic
hierarchical clustering technique. The third and final re-
builds the global knowledge needed in intra-trajectory and
inter-trajectory analysis through a reduction operation. Our
method processes the input trajectory data in one pass,
breaks the centralized nature of the traditional approaches,
avoids the movement of trajectory data, and builds the
global knowledge incrementally as trajectory frames are
generated. We integrated our method into a modularized
framework in Parallel MATLAB to take advantage of the
various built-in mathematical and clustering functions that
Parallel MATLAB provides.

We evaluated the effectiveness and performance of our
method using the folding trajectory of the protein HP-35
NleNle (i.e., a variant of the villin headpiece subdomain)
on 256 compute cores of the Gordon supercomputer. Our
method automatically and accurately identified the meta-
stable and transition stages in multiple trajectories and
explored overlapping in protein conformation space (i.e., the
space of all possible protein structures). We compared our

Enabling in-situ data analysis for large protein-folding trajectory datasets

Boyu Zhang⇤, Trilce Estrada†, Pietro Cicotti‡, Michela Taufer⇤
⇤University of Delaware
{bzhang, taufer}@udel.edu
†University of New Mexico

{estrada}@cs.unm.edu
‡San Diego Supercomputer Center

{pcicotti}@sdsc.edu

Abstract—This paper presents a one-pass, distributed

method that enables in-situ data analysis for large protein-

folding trajectory datasets by executing sufficiently fast, avoid-

ing moving trajectory data, and limiting the memory usage.

First, the method extracts the geometric shape features of

each protein conformation in parallel. Then, it classifies sets

of consecutive conformations into meta-stable and transition

stages using a probabilistic hierarchical clustering method.

Lastly, it rebuilds the global knowledge necessary for the intra-

and inter-trajectory analysis through a reduction operation.

The comparison of our method with a traditional approach for

a villin headpiece subdomain shows that our method generates

significant improvements in execution time, memory usage,

and data movement. Specifically, to analyze the same trajec-

tory consisting of 20,000 protein conformations, our method

runs in 41.5 seconds while the traditional approach takes

approximately 3 hours; uses 6.9MB memory per core while

the traditional method uses 16GB on one single node where

the analysis is performed; and communicates only 4.4KB while

the traditional method moves the entire dataset of 539MB. The

overall results in this paper support our claim that our method

is suitable for in-situ data analysis of folding trajectories.

I. INTRODUCTION

Protein folding simulations search for trajectories leading
to conformations close to the native (folded) protein struc-
ture originating from an unfolded conformation. During the
folding process, the protein changes its conformations into
what are called meta-stable and transition stages. In a meta-
stable stage, consecutive protein conformations have similar
geometric shapes and thus display small structural variations.
In a transition stage, consecutive protein conformations
change from one meta-stable stage to another and thus
exhibit large structural variations.

The study of folding trajectories includes intra-trajectory
analysis, which aims to identify meta-stable and transition
stages, and inter-trajectory analysis, which studies the abil-
ity of multiple trajectories to explore overlapping folding
space and eventually converge to the same conformation.
Traditionally, both intra-trajectory and inter-trajectory anal-
ysis methods follow a centralized approach that moves the
trajectory datasets to one centralized node and processes
the data only after the simulations are complete. There
are three major drawbacks to the use of these approaches.

First, the data movement puts an increasing pressure on
the network and I/O system and becomes the bottleneck
for performance and scalability. Second, to build the large
centralized dissimilarity matrix, the method may require
more memory storage than the centralized node has. Third,
the analysis done after the whole simulation finishes follows
the assumption that it is known a priori when the folding
protein is close to its native conformation and the simulation
can be terminated. This assumption does not always hold
true in real folding simulations.

To overcome these limitations, the analysis itself should
be performed in-situ by meeting the following requirements:
executing sufficiently fast, avoiding moving trajectory data,
and limiting the memory usage. In this paper, we propose
a novel method that enables in-situ analysis because it
meets these requirements. Therefore, it can be used for
intra-trajectory and inter-trajectory analysis efficiently. The
method includes three steps. The first extracts geometric
conformation shapes using local data only, while reducing
the storage space needed for the part of the trajectory
under consideration. The second classifies the local frame
into meta-stable and transition stages using a probabilistic
hierarchical clustering technique. The third and final re-
builds the global knowledge needed in intra-trajectory and
inter-trajectory analysis through a reduction operation. Our
method processes the input trajectory data in one pass,
breaks the centralized nature of the traditional approaches,
avoids the movement of trajectory data, and builds the
global knowledge incrementally as trajectory frames are
generated. We integrated our method into a modularized
framework in Parallel MATLAB to take advantage of the
various built-in mathematical and clustering functions that
Parallel MATLAB provides.

We evaluated the effectiveness and performance of our
method using the folding trajectory of the protein HP-35
NleNle (i.e., a variant of the villin headpiece subdomain)
on 256 compute cores of the Gordon supercomputer. Our
method automatically and accurately identified the meta-
stable and transition stages in multiple trajectories and
explored overlapping in protein conformation space (i.e., the
space of all possible protein structures). We compared our

In-situ analysis of folds –
Dimensionality reduction using PCA & MDS

One Interesting Difference Between
Data Analytics and HPC Markets
●  The Data Analytics crowd seems to really like productivity

●  Map/Reduce is easy, scalable, resilient, and…. low performance!
●  Spark is much more flexible, and higher performance, but still pretty high overhead

by HPC standards

NEAREST SUPERCOMPUTING CENTER

●  Provocative idea of the night:
●  Chapel as HPDA language?
●  Also has growing appeal for HPC on new architectures
●  Separates structural aspects of code (hierarchical

parallelism, locality) from algorithmic code
●  Recent work on performance closing gap with C + MPI

25
Copyright 2015 Cray Inc.

●  We’ve had little luck explaining that they really
 ought to be using C + MPI instead

●  Much more interest in Hadoop/Spark/R, etc. than MPI

What does “Productivity” mean to you?

Recent Graduate:
“something similar to what I used in school: Python, Matlab, Java, …”

Seasoned HPC Programmer:
“that sugary stuff that I can’t use because I require full control to ensure good performance”

Computational Scientist:
“something that lets me express my parallel computations
 without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets the computational scientists express what they want,
 without taking away the control the HPC programmers want,
 implemented in a language as attractive as recent graduates want.”

Copyright 2015 Cray Inc.
26

Chapel: a parallel language that has emerged from DARPA HPCS
●  general parallelism:

●  data-, task-, and nested parallelism
●  highly dynamic multithreading or static SPMD-style

●  multiresolution philosophy: high-level features built on low-level
●  to provide “manual overrides”
●  to support a separation of concerns (application vs. parallel experts)

●  locality control:
●  explicit or data-driven placement of data and tasks
●  locality expressed distinctly from parallelism

●  features for productivity: type inference, iterators, rich array types
●  portable: designed and implemented to support diverse systems
●  open source: developed and distributed under Apache v2.0 CLAs

Chapel in a Nutshell

27
Copyright 2015 Cray Inc.

LULESH: a DOE Proxy Application

Copyright 2015 Cray Inc.
28

Goal: Solve one octant of the spherical Sedov problem (blast wave
 using Lagrangian hydrodynamics for a single material

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

LULESH in Chapel

Copyright 2015 Cray Inc.
29

(the corresponding C+MPI+OpenMP version is nearly 4x longer)

This can be found in Chapel v1.11 in examples/benchmarks/lulesh/*.chpl

LULESH in Chapel

1288 lines of source code
plus 266 lines of comments

487 blank lines

Copyright 2015 Cray Inc.
30

LULESH in Chapel

This is the only representation-dependent code.
It specifies:
•  data structure choices

•  structured vs. unstructured mesh
•  local vs. distributed data
•  sparse vs. dense materials arrays

•  a few supporting iterators

Copyright 2015 Cray Inc.
31

Hierarchical Locales for Emerging Architectures

●  Support locales within locales to describe architectural sub-structures within
a node (e.g., memories, processors)

●  On-clauses and domain maps map tasks and variables to sub-locales
●  Supports intra-node NUMA regions and hybrid processors

sub-locale A sub-locale A sub-locale A sub-locale A

C C D E C C D E C C D E C C D E

Copyright 2015 Cray Inc.
32

sub-locale B
Locale

sub-locale B
Locale

sub-locale B
Locale

sub-locale B
Locale

Summary
●  Technology changes are driving significant changes to node architecture

and memory hierarchies
●  Billion-way parallelism, hybrid processors, deeply hierarchical memories

●  As a first step, need to transition codes to hierarchical parallelism
●  Distributed memory + threading + vectorization

●  …and focus more on data placement in memory hierarchy
●  Data motion is much more expensive than computation

●  Cloud won’t take over, but can we play nicely together?

●  Lots of opportunities to combine HPC and analytics

●  Let’s see if we can bridge the gap HPC and analytics communities
●  Goal: Performance + Productivity

33
Copyright 2015 Cray Inc.

34

Thank You.

Questions?

