Programming for the Next Decade \
(Perspectives from a Systems Architect)

Steve Scott
Cray CTO

Blue Waters Symposium
May 12, 2015

“Each year the questions remain the \
same, only the answers change.”

Jim Goodman
University of Wisconsin

Copyright 2015 Cray Inc.

BRANCH
PREDICTION
LOGIC

—oo= | INsTRUCTION
T8 DECODE
'COMPLEX
BUS INTERFACE INSTRUCTION
LoGic SUPPORT

oTAL 1| SUPERSCALER
et i INTEGER
! EXECUTION

UNITS o)
: PIPELINED
FLOATING

-i1 4POINT

Sm——

Intel Pentium, 1993 Intel Pentium 4 Cedar Mill, 2006

Cray 1, 1976

ECL5/4 NAND ‘=ol—£

gate ICs (95%) - =t - - CMOSVLSIIC * 184M transistors!

75K gates. (3400 PCBs!) « 3M transistors « Very CISC design

RISC design « CISC design * 31-stage pipeline

Vector ISA « Deep pipelines, « 3.6 GHz in 65nm
complex predictions - Last of its breed....

Memory latency 11 clocks

Post Dennard Scaling and the Power Wall AN
(2005 onward) «

Voltage no longer drops with feature size
— perf/W/year has slowed dramatically (70% = 20% CAGR)
— Have become power constrained ‘

Communication much more
Signal reach dropping: expensive than computation

64-bit DP 20pJ 126 pJ 256 pJ

130nm (2002) 8 kB SRAM | BUEHEE
90nm (2005)
65nm (2007)

45nm (2009)
32nm (2011)
20nm (2013)

SN — > Efficient off-chip

180nm (2000) 256-bit access 256
link

(CNR.—> DRAM Rd/Wr

20mm
28nm IC

\

Architectural Response SRaNy
\

1) StOp mak]ng]t worse... . CPU-£requency 1383 - 2005 \

D s

\

|

Multicore CPUs

But still only a
tiny fraction of
CPU power spent
on flops

2) Continue to innovate in circuits (e.g.: low voltage SRAMs)

3) Unwind all that complexity we threw at single thread performance
(reclaim the lost performance/W potential)

\
New Processor Landscape S SN
T ‘ e 1 Vectors are back! * 1y

(Intel Xeon Phi)
Parallelism with
low complexity and
control overhead

[Large Memory]

/
Large Large] ‘ [“Large-Enough”]

GPU computing (Nvidia Kepler)
Lots and lots of much simpler processors

(_small Mem) Memory | Lkmeny (_small Mem) Memory
Parallel Serial Serial Parallel Parallel Ser.
Optimized H' Optimized Optimized Optimized Opt. Opt.

Power-Efficient Networks e — V-G

e Cray pioneered the use of high radix routers in HPC
o Became optimal due to technology shift
e Pin bandwidth growing relative to packet length
e Reduces serialization latency of narrow links
o Reduced network diameter (number of hops)
e Lowers network latency and cost
» But higher radix network require longer cable lengths

e Limits electrical signaling speed 64 port C router
in Cray X2

e Advent of cost-effective optics allows longer cable lengths
» Optics are now cost effective above a few meters (and dropping)
» Cost, bandwidth and power are relatively insensitive to cable length

e Current and future Cray systems based on hybrid, electrical-optical networks
» Cost-effective, scalable global bandwidth
« Very low network diameter (small number of hops) = very energy efficient

Copyright 2015 Cray Inc.

Future of HPC Programming

\
Summary of Future Machines SR
e Computers are not getting faster... just wider TOSON

e O(EF) with O(GHz) clocks = O(B) way parallelism!

e Vertical locality much more important than horizontal locality

Dimension Latency Hit Bandwidth Hit Energy Hit

Across nodes ~25x ~8x ~5x

* If include local NVM, within node grows, across nodes shrinks

e Parallelism is multi-dimensional (and heterogeneous?)
e \ectorization + threading + multi-node
e Processors optimized for serial performance or power efficiency (not both)

e Interconnects won'’t look that different than today

Copyright 2015 Cray Inc.

Implications for Programmers CRANY

e Must move to more threading on the node

e All-MPI won'’t deliver maximum performance
e Must vectorize low-level loops

e 8-30x performance improvement on array operations
e Must avoid scalar code

e On “accelerated” nodes, creates traffic between accelerator and host,
or runs 3-4x slower than on a serial-optimized core

e Inherently slower and less power-efficient

e Must pay a /ot more attention to locality within node
e Think about data placement and movement
e Consider “sub-optimal” algorithms that limit data motion

Copyright 2015 Cray Inc.

Would like to code for future machines <=|=AY:’ '

in a portable way RS

\

e Spatial and Temporal Portability

(intel’ \ =
BROADCOM. B Future
rocessors
’écAwum «/ P

Power

AMD 1

inside”

(_Xeon'Phi-

e Separation of labor
e Programmer exposes parallelism and locality
e Compiler, tools, and runtime map onto specific hardware
e Optimized libraries for various platforms

Bold Prediction: —mAas

Q \
S \

e Future HPC Programming Model: MPI + OpenMP ‘

e Can we make this easier? \
e Threading, vectorization, data placement

e Recent poll at NERSC found 80% of apps use single level of
parallelism

e Why & when to convert to hybrid programming model?
e \When code becomes network bound

Load balancing and synchronization overheads become large

Excessive memory used by straight MPI

To take advantage of hybrid compute nodes

Copyright 2015 Cray Inc.

Approach to Adding Parallelism

1. ldentify key high-level loops

e Determine where to add additional levels of parallelism
2. Perform parallel analysis and scoping

3. Add OpenMP layer of parallelism

e Insert OpenMP directives

4. Analyze performance for further optimizations
e Specifically vectorization of inner loops

Copyright 2015 Cray Inc.

Which of these profiles display what is important?

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE
100.0% | 1.545303 | - -- | 721995.0 |Total
| ___
| 84.7% | 1.308232 | - -- | 721990.0 |USER
| e e —————————
[l 20.6% | 0.317597 | 0.067854 _17.9% | 276480.0 |parabola D
|| 9.8% | 0.151749 | 0.024599 | 14.2%5 T —3U7TZ0T0U"TrLlemann
| 8.7% | 0.134020 | 0.214959 | 62.6% | 20.0 \sweepyi_
|| 8.6% | 0.133213 | 0.057049 | 30.5% | 10.0 |sweepz_
|l 8.1% | 0.125045 | 0.028330 | 18.8% | 30720.0 |remap
|| 4.9% | 0.075581 | 0.085175 | 53.8% | 10.0 \dtcon:
|| 3.4% | 0.052096 | 0.012666 | 19.9% | 61440.0 |paraset
|1 3.2% | 0.049156 | 0.010650 | 18.1% | 30720.0 |evolve
|| 3.1% | 0.048344 | 0.013154 | 21.7% | 92160.0 |forces_
|l 3.1% | 0.047601 | 0.013329 | 22.2% | 92160.0 |volume
|1 2.6% | 0.040902 | 0.008664 | 17.8% | 15360.0 \ppmlri_
|| 2.1% | 0.032670 | 0.007914 | 19.8% | 30720.0 |states_
|1 1.8% | 0.027902 | 0.006195 | 18.5% | 30720.0 |flatten_
|| 1.6% | 0.024737 | 0.005826 | 19.4% | 30720.0 |boundary
|l 1.1% | 0.017032 | 0.016742 | 50.4% | 2.0 |vhone
|1 0.8% | 0.013135 | 0.004581 | 26.3% | 10.0 \sweepgli
|| 0.6% | 0.009817 | 0.004406 | 31.5% | 10.0 |sweepx2
|1 0.5% | 0.007235 | 0.009223 | 56.9% | 2.0 |init_
|| 0.0% | 0.000399 | 0.000207 | 34.7% | 6.0 |grid
[

Typical profile showing exclusive wall-time

Q
Time% | Time | Calls |[Calltree S
100.0% | 1.545303 | -- |Total
| __
| 100.0% | 1.545303 | 2.0 |vhone_
[|======— =
|l 83.1% | 1.283566 -- |vhone .LOOP.2.1i.205
[l=-=-====———— === ===
311 22.8% | 0.352952 | 20.0 |sweepy € SWEEPY 22.8% of inclusive time
[lf=-=--======————————— === ———
4111 14.2% | 0.218932 | -- | sweepy .LOOP.1.1i.32 <€ High level grid loop
5011 | | | sweepy .LOOP.2.1i.33 <€ High level grid loop
6111 14.2% | 0.218932 | 2560.0 | ppmlr
[T ===
ARRERE 5.8% | 0.089807 | 5120.0 |remap
[T T e
8l 3.4% | 0.052046 | 30720.0 |parabola
81111111 1.8% | 0.028345 | 5120.0 |remap_(exclusive)
8l 0.4% | 0.006467 | 5120.0 |paraset
SITIT11] 0.2% | 0.002949 | 5120.0 |volume
NEEEEEE
VARRERE 3.0% | 0.047088 | 5120.0 |riemann_
VARRERE 1.7% | 0.026442 | 15360.0 |parabola_
VARRERE 1.4% | 0.021188 | 5120.0 |evolve
[I T T e
81111111 0.7% | 0.010535 | 5120.0 |evolve (exclusive)
8l 0.4% | 0.005505 | 10240.0 |forces
8L 0.3% | 0.005147 | 10240.0 |volume

A Nesting level everything below 3 is called by 3

]
CRAY

\

Simplifying the Task with Reveal

(- NeNe]

Scope Loops | Scoping Results

[X| Reveal OpenMP Scoping

sweepzf90: Loop@5S1

eoo I\) Reveal 4 Call or O at line 81 of sweepz190
= =T Y D Call or O atline 97 of sweepz 90
~vhonenl @
o comrce | Name Type Scope info
< [Top Loops B 1 amay |URIESOIVEE]| FAIL Last defining iteration not known for variable that s live on exit
WARN: LastPrivate of array may be very expensive
- parabola 20
PARABOLA fat] aray |URIESONEH] FAIL Last defining iteration not known for variable that is live on exit
07168 LWP@GLD WARN: LastPrivate of array may be very expensive.
- tiemann.190 il isz
- RIEMANN 53 radius - zxc(i+nypez*isz) P Anay |URIESONEE] FAIL: Last defining iteration not known for variable that is live on exit
229082 Loop@63 54 theta = zyc(jsmypey*js) WARN: LastPrivate of array may be very expensive.
1:4100 Loop@64 S5 stheta - sin(theta) ql aray |UNIESONEE] FAIL Last defining iteration not known for variable that is live on exit
- Sweepz190 @ 56 radius - radius * stheta
- Sweerz s7 WARN: LastPrivate of array may be very expensive
57464 Loop@51 58 ! Put state variables into 10| delpl Scalar Private
37461 Loop@52
N o ® 59 dom =1 npez delp2 Scalar Private
SWEEPY @ o ks l'k"s(e delix Scalar Private
39347 Loop@35 @ n o= ko+ kstn-) 4
39342 Loop@as 62 r(n) = recva(l.j.k.i.m diheta Scalar Private
- Sweepx1 120 @ 63 p(n) = recv3(2.j.k.i.m) avoll Amay Private FAIL: incompatable with ‘natural’ scope
~ SWEEPXT @ 2 uln) = recv3(s, j.k.i.m) WARN: LastPrivate of array may be very expensive.
38855 Loop@31 @ & V(n) = recv3(3.i.k.i.m) : |
318853 Loop@32 66 w(n) = recva(4,j.k.i.m) dx Array Private FAIL: incompatable with natural’ scope.
- sweepx2 20 67 £(n) = recv3(6.i.k,i.m) WARN: LastPrivate of array may be very expensive
= SWEEPX2 68 enddo O Array Private FAIL: incompatable with ‘natural’ scope.
39166 Loop@31 C—
39164 Loop@32 WARN: LastPrivate of array may be very expensive
nfo- Line 5
® Aloop starting at line 51 was not vectorized because it containg € Array Private [FAIL: incompatable with 'natural’ scope.
WARN: LastPrivate of array may be very expensive
Vhone pi loaded. vhone_loops.ap2 loaded
eoo \] Reveal OpenMP Scoping

8 0.0

IX| OpenMP Directive

| Directive inserted by Cray Reveal. May be incomplete
1501

5 parallel do default(none)

130MP& dvol.d 1hatp. dius.stheta.svel. &
150MPE& theta.u.v.w.xa.xa0) &

ISOMP& private (i, k.m.n.delp2.delp1.shock temp2.old_flatonemtl.hdt, &
130MPE sinxf0.gamfac1.gamfac2. dtheta, deltx fractn, ekin)

I$OMP& shared (gamm.iszjs.ks.mypey.mypezngeomznlefiznpeznrightz &

150MP& recv3,sendd, zdz xc.zyc.zza)
|

3 Close

Copy Directive | |

‘Scope Loops | Scoping Resuits

Find Name.

Scope

Scaiar shared
Shared

Scalar Shared
Scalar Shared
Scalar Shared
Away Shared
Away shared
Scaiar Shared
Amay Shared
Away Shared
Away shared

sweepz10: Loop@s1
Call 6r 10 atline &1 of swespz90
CAllor 10 2tline 57 of sweepz 190

info

WARIN: atomic reduction operator required unless reduction fully infined

gl

Insert Directve,

[Show Directe |

-
]
CRAY

[\
S \
\

Navigate to relevant loops to parallelize

Identify parallelization and scoping \

issues

Get feedback on issues down the call
chain (e.g.: shared reductions)

Shows vectorization and other compiler

optimizations

Optionally insert parallel directives into

source

Validate scoping correctness on

existing directives

i
Data Management in the Memory Hierarchy &R~Aay,
[Y \
CPU \
(on-chip caches)
CPU Near N:emory
(on-chip caches) (HBM/HMC)
On Node s On Node — |
Memory Far Memory
| (DRAM) ‘ - (DRAM) \
I - - - - -
Off Node Storage T Data-Centric Code Optimization
() (NVDIMM)
— | User Simulation
Off Node Mid Storage
(SSD) C/Fortran DSL
Far Stlorage Implementation
(HDD) ‘ ‘
Two levels of interest: i —
Memory hierarchy accessed as memory orkos T
(caches, HBM, DDR4, NVM, remote SSD?) Raja SoenDC Abstract
. TiDA —p] |p tation [€=] Machine
Network attached NVM that is accessed as storage HTA Ll A e (HWLOC)
Legion ‘
At each level, want a dual approach CIF Compiler
APIs, directives, and tools for users to manage/access data v
System software to automatically manage the memory deRT

USE

SINCE

SOFTWARE

Reumg UBIOUMOUS RADIO-FREQUENCY

o= w SAN sup COMPLEXTTY
e =

USING mees =
GARTNER MASSIVElY

o BOUGCAL £2 G o TilEmuBLE
= _

DESKTOP

“n
o) ZETTABYTES a D I S

sz = SHARED TIME =

. |ﬁ"é'iusﬁ'i“"§vsums

DEHN"mN BIOGEOCHEMICAL NETWURKS

RECONSIOER SEGA“RT il INFuRMATInN MAY MANAGEMENT MANAGE
awes RECORDS SOCIAL LARGE 22 ©hoW

i, STORAGE = *

Wk DIFFICULTY

TARGET ABILITY EXAMPLES & cumhenT
SEnsoR ARCHIVES SETS

== DETABTES 2,
%
= INTERNET =™

= TECHNUL[]GIES

=T« DISTRIBUTED cAPTURE

CAPACITY =

wi PRACTITIONERS

PRESENTATIONS

APPLIED =

ANOUNT DESCRIBING

Big Data vs. HPC

Common Needs:

e Compute power e Scaling

e Interconnect bandwidth e Resiliency

e Memory capacity & bandwidth e Visualization

e Storage system capacity & bandwidth e System management
e Workload management e etc.

Copyright 2015 Cray Inc.

\
A Matter of Balance cRANY

e
Network F_ile System _
Bandwidth | Capacity & Bandldth
_ 5
Memory
: Capacity
Compute 3 BW

We have these same trade-offs within HPC
May lean towards larger memories, and more network & storage bandwidth

Copyright 2015 Cray Inc.

19

Enabling More Complexity & Capability...
Big Data - Fast Data

A

Global
Memory

+ Fast
Interconnects

Fast Data

Big Data

LAN/WAN

CLOUD Interconnects

§
CRAY |
e \
. \
\
Supercomputers \
&
Analytics
Solutions
Public &

Private Clouds

I’ve Looked at Clouds from Both Sides Now ='=AYf‘ |

\

> < z e
‘Ql . o
o

-

-

CI@uds Willin et replce.,(much f HRE S I'“.'
- % 4

¥
e

Twca KEYAL mgs we should takeraways
‘.JBertam‘y. N~
Easezof "se
> | Ve
.‘ - o » B
W el it

COMPUTE | STORE | ANALYZE .

(21)
Copyright 2015 Cray Inc. N

System Monitoring and Operational Analytics ‘='=A:Yf

Ngn C

Currently collect logs in multiple places
SMW, SDB & login nodes, Lustre service nodes
Types of data:
Network health
Console traffic (node-level OS errors)
Temp, power, perf & status of all components
Job scheduling and placement information
Job performance data
File system and network logs
Etc.
Hard to diagnose performance problems or failures
SSA s a first step...

)

Analytics
Appliance

Predictive failure analysis
Job failure/performance
diagnosis
» Cyber-threat detection
» System optimization
« Power management
+ Job scheduling and
placement
* 10 and network
configuration
» Proactive detection of

performance issues
\System dashboards

~

/

\
Protein Folding — Mixed Simulation and Analytics &R~AaY,

e \
S \

to drive \

the simulation
to create to compare with

e Focuses on how protein folding happens

the model simulation results e Model possible paths to folded end-state
e Temporal resolution matters, but drives data size

geometry input \

conditions

biolo | i i
10l0gy Simulation
physics solution
process
v?r./ables solved variables
of interest of interest)

Markov State
model of a fold

® !
Protein Folding — Mixed Simulation and Analytics ~=FRAaN"

Enabling in-situ data analysis for large protein-folding trajectory datasets S \

to drive \ \

the Slmulatlon ’ ’ 12 s {4 | [N i i i
. W ‘& 1000 |20 [18 (32 [.. |104 1 2 s
to Create to Compare Wlth 2 (20 |00 |23 |21 [. |93 HEIEIEE
the model simulation results E N 0 X B O . N B
4 |32 |21 |07 |00 89 h e 22 20 \
‘> 4 |12 a1 |17
00 . - - -
N [104 |93 |94 [89 [.. |00 N [aa |23 |54
@) ©
Figure 1: One conformation of the villin HP-35 protein (a); part of its distance matrix using only its backbone atoms in
the ion (b); and three and the associated ei capturing and izing the i
geometry (¢).

Abstract—This paper presents a one-pass, distributed
method that enables in-situ data analysis for large protein-
folding trajectory datasets by executing sufficiently fast, avoid-
ing moving trajectory data, and limiting the memory usage.

In-situ analysis of folds —

Dimensionality reduction using PCA & MDS

geometry input

conditions

o] . .
biology Simulation

husics solution

phy - - process CATH
variables solved variables
of interest

of interest
Automated classification in protein databases

One Interesting Difference Between
Data Analytics and HPC Markets .

e The Data Analytics crowd seems to really like productivity
e Map/Reduce is easy, scalable, resilient, and.... low performance!

e Spark is much more flexible, and higher performance, but still pretty high overhead
by HPC standards

e We’ve had little luck explaining that they really

ought to be using C + MPI instead
e Much more interest in Hadoop/Spark/R, etc. than MPI

e Provocative idea of the night:
e Chapel as HPDA language?

e Also has growing appeal for HPC on new architectures

e Separates structural aspects of code (hierarchical
parallelism, locality) from algorithmic code

e Recent work on performance closing gap with C + MPI NEAREST SUPERCOMPUTING CENTER

Copyright 2015 Cray Inc.

What does “Productivity” mean to you? cRas |

Recent Graduate:
“something similar to what | used in school: Python, Matlab, Java, ...”

Seasoned HPC Programmer:
“that sugary stuff that | can’t use because | require full control to ensure good performance”

Computational Scientist:
“something that lets me express my parallel computations
without having to wrestle with architecture-specific details”

Chapel Team:
“something that lets the computational scientists express what they want,
without taking away the control the HPC programmers want,
implemented in a language as attractive as recent graduates want.”

Copyright 2015 Cray Inc.

\
Chapel in a Nutshell SRSy
Chapel: a parallel language that has emerged from DARPA HPCS SO

e general parallelism:
e data-, task-, and nested parallelism
e highly dynamic multithreading or static SPMD-style

o multiresolution philosophy: high-level features built on low-level

e to provide “manual overrides”
e to support a separation of concerns (application vs. parallel experts)

¢ locality control:

e explicit or data-driven placement of data and tasks
e locality expressed distinctly from parallelism

o features for productivity: type inference, iterators, rich array types
e portable: designed and implemented to support diverse systems
e open source: developed and distributed under Apache v2.0 CLAs

=

R AY
CHHAaAPEL
=
27

Copyright 2015 Cray Inc.

LULESH: a DOE Proxy Application o

e \
S \

Goal: Solve one octant of the spherical Sedov problem (blast wave
using Lagrangian hydrodynamics for a single material \

DB: sedov_001.00000
Cycle: 0 Time:0

pictures courtesy of Rob Neely, Bert Still, Jeff Keasler, LLNL

LULESH in Chapel

Copyright 2015 Cray Inc.

LULESH in Chapel cRAaNyY

1288 lines of source code
plus 266 lines of comments
487 blank lines

(the corresponding C+MPI+OpenMP version is nearly 4x longer)

This can be found in Chapel v1.11 in examples/benchmarks/lulesh/*.chpl

LULESH in Chapel

This is the only representation-dependent code.
It specifies:
« data structure choices

- structured vs. unstructured mesh

* local vs. distributed data
e sparse vs. dense materials arrays

 a few supporting iterators

Hierarchical Locales for Emerging Architectures cRas

e \
S \
\

Support locales within locales to describe architectural sub-structures within
a node (e.g., memories, processors)

sub-locale A sub-locale A sub-locale A sub-locale A
Icl[c|[D][E] Icl[c||D][E] lcl[c|[D][E] lcl[c|[D][E]
sub-locale B sub-locale B sub-locale B sub-locale B

Locale Locale Locale Locale

On-clauses and domain maps map tasks and variables to sub-locales
Supports intra-node NUMA regions and hybrid processors

\
Summary CRAY

[Y \
S \
e Technology changes are driving significant changes to node architecture \
and memory hierarchies

e Billion-way parallelism, hybrid processors, deeply hierarchical memories \

e As afirst step, need to transition codes to hierarchical parallelism
e Distributed memory + threading + vectorization

e ...and focus more on data placement in memory hierarchy
e Data motion is much more expensive than computation

e Cloud won'’t take over, but can we play nicely together?
e Lots of opportunities to combine HPC and analytics

e Let’s see if we can bridge the gap HPC and analytics communities
e Goal: Performance + Productivity

33
Copyright 2015 Cray Inc.

Thank You.

Questions?

