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Systems of varying sizes (N) and different particle shapes were simulated to 

compare the speed of a CPU implementation on a single Intel Sandy Bridge core to 

an NVIDIA GTX Titan GPU.

Using HOOMD's architecture, it is a simple matter to extend this work onto 

multiple CPUs and GPUs through MPI domain decomposition. Based on 

benchmarks above, this may be efficient for even a few thousand particles per GPU. 

Additionally, other potentials such as the nonconservative spring-dashpot model 

typically used by the granular community could be created within this framework.
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• HOOMD-blue web page: http://codeblue.umich.edu/hoomd-blue

• General purpose molecular dynamics simulations fully implemented on graphics processing units. 

        D
OI:10.1016/j.jcp.2008.01.047

• Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units. 

        D
OI:10.1016/j.cpc.2011.06.005

• DNA-nanoparticle superlattices formed from anisotropic building blocks. DOI:10.1038/nmat2870

• Three-dimensional discrete element method for granular materials. DOI:10.1002/nag.1610140702

Introduction

Faceted shapes are commonly created in experimental 

systems of colloidal and nanoscale particles. However, 

many interesting physical phenomena, such as crystalline 

nucleation and growth and glassy dynamics, are 

challenging to model in these systems because they 

require detailed dynamical information at the individual 

particle level. A variety of computational models have 

been developed to address this challenge over the years, 

but commonly-used methods are unable to simultaneously 

capture both faceting and dynamical assembly behavior.

Jones et al, 

Nature Materials 9, 913–917 (2010)

Two assumptions are made to simplify geometric considerations when calculating 

particle interactions:

Method

• Particles interact via short-range, purely repulsive forces

• The shapes involved are polytopal areas or volumes 

swept out by a disk or sphere of a given radius R

By assuming that interactions are purely repulsive, any particle interaction can be 

accounted for by considering interactions between low-dimensional features of the 

particles:

Assuming a short-range interaction between rounded polytopes, we can take the 

points of interaction between two features to be their closest points.

• In 3D, between all pairs of vertices and faces and all pairs of edges and edges

• In 2D, between all pairs of vertices and edges

Implementation

To parallelize the force evaluation, computation is split among several CUDA 

threads for each particle:

In 2D, two threads are assigned to each 

vertex of a particle in the system: the first 

evaluates the interaction between its 

vertex and all edges of particle j and the 

second evaluates the interaction between 

its edge and all vertices of particle j

In 3D, one thread is assigned to each vertex 

of particle i, edge of particle i, and vertex 

of particle j. The vertex threads calculate 

vertex-face interactions for all faces of the 

other particle and the edge threads 

calculate the interaction between their edge 

and all edges of particle j.

The forces, torques, and potential energies 

are summed per-particle using efficient 

atomic operations in shared memory.

Thread 0

Thread 3

Thread 8

Thread 0

Thread 4

Shape in Molecular Dynamics
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We%have%surveyed% the%space%of% self,assembled%ordered%structures%of%145%different%polyhedra%with%hard%
particle%Monte%Carlo28,%self,assembled%icosahedral%quasicrystals%and%complex%clathrate%structures%with%a%
model%potential12% (see% figure%3),% and% investigated%packings%of% 55,000% shapes% in% three% families29.% In%all% of%
these%works,%we%run%large%parameter%sweep%jobs%to%cover%regions%of%phase%space%,%each%individual%run%is%
relatively%small%(10,000%particles%or%less)%and%can%only%scale%to%a%single%GPU.%We%are%just%now%beginning%to%
study% the% crystallization%processes% (see% figure% 4).%Nucleation% is% a% rare% event,% and% the%growth%process% is%
very%quickly%affected%by%the%periodic%boundary%conditions.%To%properly%study%crystallization,%we%need%to%
run%much%larger%systems.%Jobs%consisting%of%dozens%of%loosely%couple%simulations%of%tens%to%hundreds%of%
millions% of% particles% are% needed% to% sample%many% crystallization% and% growth% events.% Only% a% system% as%
powerful%as%Summit%will%be%capable%of%running%such%jobs.%

We%will% investigate% crystallization% processes% of% atomistic,% nanoparticle,% and% colloidal% scale% particles% to%
understand%crystallization%mechanisms.+We%want%to%understand%the%process%itself,%and%how%it%differs%with%
length%scale,%particle%shape,%and%properties.%We%are%also%interested%in%hierarchical%assemblies,%where%many%
small% particles% cluster% together% to% form% a% supraparticle30,% which% may% then% crystallize% into% an% ordered%
structure.%

Our% studies% will% produce% a% wealth% of% data% never% before% generated% by% computer% simulations% of% the%
spontaneous%growth%of%complex%crystal%structures.%Beyond%publication%of%numerous%high,impact%papers%
reporting% growth% mechanisms,% etc.,% we% plan% to% make% available% the% acquired% datasets% to% the% research%
community.%We% anticipate% that% our% studies%will% impact%multiple% fields% of% chemistry,% physics,%materials%
science,% chemical% engineering,% geology,% pharmaceutical% sciences,% and% any% disciplines% in% which% crystal%
formation,%nucleation%and%growth,%and/or%the%emergence%of%order%from%disorder%is%of%interest.%

 

Figure 3%,%Growth of a 20,000 atom icosahedral quasicrystal12. A, A roughly spherical solid (green) grows within a liquid droplet that 
coexists with the gas phase (blue). Diffraction patterns along two-fold (B), three-fold (C), and fivefold (D) axes exhibit Bragg peaks 
and weak diffuse scattering. We envision growing an icosahedral quasicrystal 5,000 times larger than this sample. 
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%

8 Team+composition+

PI,+Technical+Lead,+and+Single+Point+of+Contact:+Joshua+A.+Anderson,+Ph.D.%and%Senior%Research%Area%
Specialist,%University% of%Michigan.%Anderson% is% the% lead% developer% for%HOOMD,blue,% he% designed% the%
original%code%and%has%overseen%all%development%on%it.%Anderson%has%been%using%HPC%systems%for%research%
since%2004.%He%has%experience%using%systems%ranging%from%small,%4%node%clusters%all%the%way%up%to%Titan.%
He% earned% his% Ph.D.% in% Physics% for% work% on% simulations% of% polymer% self,assembly.% He% began% HPC%
software%development%with%HOOMD%in%2007,%but%has%extensive%software%development%experience%prior%
to% that%with% an% undergraduate% degree% in% Computer% Science% and% Physics.% Anderson% is% a% full% time% staff%
scientist%and%will%commit%30%%of%his%time%to%this%project%to%develop%code%and%supervise%all%efforts%of%the%
CAAR%project%to%optimize%HOOMD,blue.%

PI,+Scientific+Lead/Group+Leader:+Sharon+C.+Glotzer,%Ph.D.%and%Stuart%W.%Churchill%Collegiate%Professor%
of%Chemical%Engineering,%Professor%of%Materials%Science%and%Engineering,%Professor%of%Physics,%Applied%
Physics,%&%Macromolecular%Science%and%Engineering,%University%of%Michigan,%and%is%an%elected%member%
of%the%National%Academy%of%Sciences.%Glotzer%leads%a%research%group%of%30%graduate%students,%post%docs,%
and%senior%researchers.%She%has%26%years%of%experience% in%code%development% for%HPC%architectures,%and%
molecular% simulation.% She% has% been% a%member% of%ASCAC% since% 2011,% and% is% a% rounding% co,director% of%
VSCSE.%She%will%direct%the%science%campaign,%which%will%be%carried%out%by%a%number%of%researchers%in%the%
group.%She%will%not%be%directly%involved%in%code%development%on%this%project.%

co&PI:+ Jens+Glaser,% Ph.D.% and% Postdoctoral% Research% Fellow,%University% of%Michigan.%Glaser%wrote% the%
MPI% communication% module% for% HOOMD,blue,% and% has% contributed% numerous% other% features% and%
performance%improvements%to%core%capabilities.%He%has%been%using%GPUs%for%molecular%simulation%since%
2009,%national%HPC%resources%for%research%since%2011%and%has%developed%free%energy%techniques%optimized%
for%multiple%GPUs.%Glaser%will%work%on%all%aspects%of%the%CAAR%optimizations%to%HOOMD,blue,%and%will%
especially%focus%on%the%communication%routines.%

Team+member:+M.+Eric+ Irrgang,%Graduate%Student%Research%Assistant,%University%of%Michigan.% Irrgang%
coauthored%the%design%of%the%HPMC%module%for%HOOMD,blue%and%is%responsible%for%large%portions%of%its%
implementation.% For% the% past% five% years,% he% has% been% developing% and% using% HPC% particle% simulation%
software% to% carry%out%his%doctoral% research,%writing%Python% interfaces% and%C++% compute%backends%with%

%
Figure 4 – Example of colloidal scale nucleation and growth of a crystal from a fluid of hard octahedra. 

Scaling on OLCF Cray XK7

OLCF%CAAR:%HOOMD,blue% % Joshua%A.%Anderson,%Jens%Glaser,%Sharon%C.%Glotzer%
% % University%of%Michigan%

4%/%16%

HOOMD,blue%needs% to%be%expanded%with%new%formats%and% initialization%routines% that%are%efficient%and%
scalable.%

2 Parallel+computing+strategy+

2.1 Parallel+programming+model+

We%employ%NVIDIA%CUDA%as%a%parallel%programming%language%for%all%portions%of%the%code%that%operate%
on% particle% data.% Work% is% distributed% across% GPUs% using% MPI% for% spatial% domain% decomposition.%
HOOMD,blue% supports% both% CUDA,aware% and% standard% MPI% stacks,% which% makes% its% parallel%
implementation%highly%portable,%with%the%option%to%enable%GPUDirect%RDMA%when%such%functionality%is%
supported%by% the%hardware% and%a%CUDA,aware%MPI% library.%HOOMD,blue% 1.0.x% runs%optimally%using%
one%CPU%core%per%GPU,%and% faster% than%LAMMPS,GPU%on%Titan%by%about%a% factor%of% two27.%On%single,
GPU,%hybrid%XK7%nodes%it%therefore%only%utilizes%only%a%fraction%of%the%available%16%CPU%cores.%However,%
we% anticipate% that% Summit’s% dense% GPU% nodes% will% deliver% even% better% scaling% performance% with%
HOOMD,blue.%

2.2 Scaling+benchmarks+on+Titan++

We%employ%a%standard%spatial%domain%decomposition%approach%to%achieve%scaling%across%almost%all%nodes%
of%Titan.%In%strong%scaling%benchmarks%of%MD%and%DEM,%we%fix%the%system%size%N%and%measure%particle%
steps% per% second% (N*steps% per% second)% as% function% of% the% number% of%GPUs.% For%HPMC,%we%measure% a%
number%of%attempted%trial%moves%per%second.%We%have%shown27%that,%for%simulations%with%homogeneous%
workloads,%weak%scaling%implicitly%follows.%

%
Fig. 1: Strong scaling benchmarks for all three simulation types (MD, MC, DEM) supported by HOOMD-blue, on Titan. Shown is 
simulation performance (number of particle steps trial moves per second (MD, DEM), and trial moves per second (HPMC) vs. 
compute resources (number of GPUs) for systems of size N (number of particles)=64M and 4M, in double-logarithmic 
representation. The relevant limiter of scaling is the computation/communication ratio, as indicated by the number N/P of 
particles per GPU, which has to large enough (>~ 10,000 MD and HPMC). 
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strength. Coexistence densities remain fairly constant at fF z
0.55 and fS z 0.68 up to an interaction strength of 3/kT z 0.8,
where the uid coexistence density drops almost to zero. A
compilation of coexistence results is shown in Fig. 3b, where a
phase diagram in 3/kT vs. f (both uid and solid, showing tie
lines between coexisting phases) is shown in the main panel
and in 3/kT vs.Pca

3/kT is shown in the inset. From our results it
can be seen that the system does not have stable gas–liquid
coexistence or a critical point. This is consistent with the
requirement for the range of our potential to be below 3.20a
(our range is 3.19a), which is the lower range limit for the
existence of a critical point.27

Phase diagrams in Fig. 3b are shown alongside predictions
for a system with a similar interaction range27 for qualitative
comparison. The range of the potential for our system, as
described in eqn (1)–(4), corresponds to 3.19a, while the system
depicted in red lines has a range of 3.02a. To compute the
equivalent densities we t our potential form to the double
Yukawa form used in the original reference with the particle
core size, s, as an adjustable parameter. Densities are corrected
with s to allow direct comparison between the two systems. The
interaction strength in the benchmark system is also converted

to an equivalent interaction strength, 3/kT, by making the
minimum of the pair potential energy the same between the two
potential functional forms. Osmotic pressure is converted by
means of using the equivalent core particle size in the non-
dimensional group, Pa3/kT. As can be seen in Fig. 3b, both
systems have comparable behavior in both coexistence densi-
ties and osmotic pressure. Given the difference in range we do
not expect the two systems to have exactly the same behavior.
The fact that coexistence densities and pressures are very close
to a benchmark system gives us condence in the use of the
sedimentation equilibrium methodology to be used in aniso-
tropic interaction systems.

Observed Janus particle phases

To analyze the phase behavior of Janus particles we have to rst
identify the types of structures accessible to the system. In the
isotropic case explored in Fig. 2 and 3, the two main structures
observed were a disordered uid and a close-packed solid. In
this work we study Janus particles with Janus balance values, as
dened in the Theory section, of a ¼ 105", 115", 125", and 135".
The chosen Janus balance values correspond to area coverages

Fig. 4 Observed phases from single patch Janus particle simulations. Fluid (panels (a), (d) and (g)) at f¼ 0.41, a¼ 105", 3/kT¼ 0.8; rotator close-
packed (RotCP) structure (panels (b), (e) and (h)) at f ¼ 0.69, a ¼ 105", 3/kT ¼ 0.8; and lamellar (panels (c), (f) and (i)) at f ¼ 0.68, a ¼ 105", 3/kT ¼
1.0. Panels (a–c) show renderings from simulation results showing attractive patches in blue. Panels (d–f) show the same configuration as in
panels (a–c) but showing only particle centers. Panels (g–i) show the same configurations as above showing orientation vectors.

Soft Matter This journal is © The Royal Society of Chemistry 2014
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authors identified these two pathways by visual inspection of
simulation trajectories supported by tracking of the cluster size
distribution. This approach to assembly pathway inference,
however, cannot reveal the full microscopic mechanistic details
of the process. A systematic approach to assembly pathway
inference developed by Jankowski and Glotzer21,22 discovers
metastable structures by computing approximate partition
functions and identifies assembly pathways by constructing a
directed network over these states. The great strength of this
approach is that it recovers thermodynamic assembly pathways
independently of system dynamics, but by the same token
cannot capture the thermodynamically and kinetically mean-
ingful assembly pathways within a single unified framework.
We present a new approach to infer systematically self-

assembly pathways by nonlinear machine learning of molecular
simulation trajectories. By mimicking the true building block
dynamics within the simulations, we naturally recover assembly
pathways that reflect both the thermodynamics (what can
assemble?) and kinetics (how does it assemble?) of the process.
As we discuss below, the nonlinear machine learning technique
that we employ in this work, diffusion maps,38,39 circumvents
the technical difficulties that plague the application of linear
approaches such as principal components analysis (PCA)40 and
recovers kinetically meaningful order parameters that character-
ize the collective structural rearrangements driving the long-
time evolution of the assembly process.39 We demonstrate our
approach in an application to Brownian dynamics simulations
of the self-assembly of anisotropic patchy particles into
polyhedral aggregates as a well-characterized test system.27,28,41

Our approach is directly extensible to systems with arbitrary
dynamics and arbitrary particle geometries and chemistries. We
anticipate that the systematized recovery of self-assembly
pathways and mechanisms will provide a deeper understanding
of self-assembly processes of scientific and technological
importance and ultimately help to guide rational building
block design for the fabrication of materials with desirable
structural and functional properties.

2. THEORETICAL METHODS
2.1. Model. We model anisotropic “patchy particles” using

the model of Zhang and Glotzer41 in which each particle
comprises a large sphere decorated by smaller attractive surface
patches arranged in two coaxial annular rings (Figure 1). All
patchy particle visualizations were generated using VMD.42

This model has been used previously to study the reversible
self-assembly of a range of aggregates including tetrahedral,
octahedral, and icosahedral clusters.41 The patchy particle is
composed of three subspecies, denoted A, B, and C, that
together comprise a rigid body. The larger A-spheres represent
a spherical colloidal particle. The smaller B- and C-spheres that
adorn the A-sphere mediate the anisotropic interparticle
interactions. The B-spheres compose the ring closest to the
equator of the A-sphere, while the C-spheres make up the ring
closer to the pole. B−B and C−C interactions between spheres
in different particles are attractive, serving as anisotropic “sticky
patches”. We can alter the relative geometry of our patchy
particles by varying the polar angle of the B and C rings.
Following Zhang and Glotzer,41 we bias the assembly of
particular polyhedra by placing the sticky patches such that they
optimally contact in the geometry of an idealized aggregate. We
are interested in two simple, but nontrivial, target structures
upon which to test and validate our methodology: tetrahedral
aggregates as a simple test case for the assembly of small

polyhedral clusters and icosahedral aggregates as a toy model
for viral capsid formation that has been well-characterized by
Wilber et al.27,28 To favor icosahedral clusters, we place 14 B-
spheres at a polar angle of 70.6° and 11 C-spheres at a polar
angle 49.0°. To favor tetrahedral cluster formations, we place
11 B-spheres at a polar angle of 46.8° and 6 C-spheres at a
polar angle of 24.9°.
We treat the patchy particles as rigid bodies neglecting all

intraparticle interactions and model interparticle interactions
using potentials previously implemented by Glotzer and co-
workers.7,41 Interparticle B−B and C−C interactions are
modeled by a Lennard-Jones potential

ε σ σ= −⎜ ⎟ ⎜ ⎟
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where σi is the diameter of particle i, εi the potential well depth
for particle type i, and r the interparticle separation. A−X,
where X ∈ {A,B,C}, and B−C interactions occur through a
surface shifted Weeks−Chandler−Andersen (WCA) potential
to account for excluded volume of the A spheres43
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where εij = (εiεj)
1/2 is defined according to the Berthelot

combining rule,44 Δij = (σi + σj)/2 − σ,45 and σ is a parameter.
We perform our simulations in dimensionless units such that σ
= σB = σC = 1, σA = 5, ε = εA = εB = εC = 1, and m = mA = mB =
mC = 1 where mi is the mass of sphere i. The reduced
temperature is defined as T* = kBT/ε, and reduced time as t* =
t/(mσ2/ε)1/2. We note that for this choice of parameters, ΔAA =
4, ΔAB = ΔAC = 2, and ΔBC = 0, which effectively prohibits A−A
overlaps, assuring that the patchy particles interact primarily by
specific B−B, C−C, and B−C interactions on the surface of the
A spheres.

Figure 1. Rigid body double-ring patchy particles employed in this
study.41 Panels (a) and (b) correspond to the structure of the
tetrahedral monomer and the idealized tetrahedral cluster, respec-
tively; (c) and (d) represent the icosahedral monomer and idealized
icosahedral cluster, respectively. A-spheres are gray, B-spheres red, and
C-spheres green.
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the phase must both choose a noncubic tiling and orient along
a longer axis of the cubic simulation box.
Per Figure 2, at Dr = 0.67 there is an order−order phase

transition between the Fddd phase and PL or HLM. At Dr =
0.5, there is an order−order phase transition between the Fddd
phase and R3̅m. In several regions, the Fddd network competes
for stability with the DG.
Long Micelle Phases. Tetragonally Arranged, Alternating

Long Micelles. For a tether length of L = 8 at ϕ = 25%, Dr =
1.0, the TNPT system forms a tetragonal packing of long
cylindrical micelles (TLM). This phase was found in a small set
of simulations outside the range shown in Figure 2. This was
the only ordered phase observed for ϕ < 35%.
In this phase, both NPA and NPB form long micelles, as seen

in Figure 5f. The LM arrange tetragonally, rather than
hexagonally, and alternate NPA and NPB. The polymer tether
fills the space between the LM.
Hexagonally Arranged, Long Micelles. For a tether length

of L = 2 and 4, ϕ = 35−50%, Dr = 0.67 and 0.5, the TNPT

system forms hexagonally arranged long micelles (HLM). The
phase also forms for a tether length of L = 6, ϕ = 35, 45, 50%
and L = 8, ϕ = 45 and 50%, for Dr = 0.67, and L = 6, ϕ = 45
and 50%, for Dr = 0.5.
In the HLM phase, NPA form LMs that are hexagonally

arranged, as shown in Figure 5b. The tethers form a shell
around the LMs. NPB forms a honeycomb (HC) shaped bilayer
around the LM. As the tether increases in length, the shell
formed around the LM becomes thicker.
As seen in Figure 2, for L = 2 and L = 4, Dr = 0.67 and 0.5,

HLM was the only stable phase found. At L = 6 and 8, there is
an order−order phase transition between HLM and PL phases,
the Fddd network, and R3 ̅m.

R3̅m Micelles. A network phase of space group R3 ̅m (space
group No. 166) forms at a tether length L = 6 at ϕ = 40, 45,
50%, Dr = 0.5.
Within this phase, NPA forms a weaving long micelle type

structure. These structures have nearly straight sections that

Figure 4. Network phases. Three network structures. (a) Ia3 ̅d (space
group No. 230) double gyroid. (b) I4132 (space group No. 214)
alternating gyroid. (c) Fddd (space group No. 70) Fddd network.

Figure 5. LAM, PL, and LM phases. The left column shows
simulations results for the following phases: (a) lamellar phase, (b)
honeycomb plus long micelle phase, (c) lamellar plus perforated
lamellar phase, (d) lamellar plus short/long micelle phase, (e) (R3̅m)
perforated lamellar plus long micelle phase, and (f) tetragonally
arranged long micelle phase. The middle and right column illustrate
neighboring cross sections of the phase.
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FIG. S1. Snapshots from Movie 1. A binary system of N = 576 spinners, where half of the spinners rotate clockwise and the
other half rotate counter-clockwise. Simulation parameters: � = 0.5, !

0

= 1, T ⇤ = 0. The movie shows spinners (left column)
and vector plots of the short-time di↵usion �x(10t

0

) (right column) at three di↵erent times during spinodal decomposition.
The simulation starts from an initially mixed configuration (top row, t = 0) and proceeds through phase separation (middle
row, t = 1, 000t

0

), until in steady state two vertical stripes are formed (bottom row, t = 5, 000t
0

).

Nguyen et al. Phys Rev. Lett. 2014

Self-Assembly and Crystallization of Hairy ( f‑Star) and DNA-Grafted
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ABSTRACT: Nanoparticle superlattices are key to realizing
many of the materials that will solve current technological
challenges. Particularly important for their optical, mechanical
or catalytic properties are superlattices of anisotropic (non-
spherical) nanoparticles. The key challenge is how to program
anisotropic nanoparticles to self-assemble into the relevant
structures. In this Article, using numerical simulations, we
show that “hairy” ( f-star) or DNA grafted on nanocubes
provides a general framework to direct the self-assembly into
phases with crystalline, liquid crystalline, rotator, or noncrystalline phases with both long-range positional and orientational order.
We discuss the relevance of these phases for engineering nanomaterials or micromaterials displaying precise orientational order,
realization of dry superlattices as well as for the field of programmed self-assembly of anisotropic nanoparticles in general.

■ INTRODUCTION
Nanoparticle superlattices (NPS), arrangements of nano-
particles (NPs) into periodic structures, have direct applications
for novel fuel cell membranes, solar photovoltaics, carbon
dioxide storage, or catalytic materials among many others. The
optimal strategy to engineer NPS is self-assembly, where the
different components spontaneously assemble into the desired
material. Yet, direct self-assembly of NPs into NPS is
considerably difficult, as it only succeeds under very precise
environmental conditions.1−5 An alternative elegant route is to
program self-assembly by controlling NPs interactions through
a linker molecule such as DNA.6,7 Over the past few years,
DNA programmed self-assembly has proven to be an extremely
versatile and general strategy to engineer NPS.8−11

Systems of spherical NPs with isotropically distributed DNA
strands have been widely studied and exhibit a very rich phase
diagram,11 yet, many of the relevant NPS required in
applications can only be self-assembled if the components
(the NPs) display some degree of anisotropy. Precision NP
synthesis provides different ways of inducing NP anisotropy,
such as geometry (or shape), patchiness, etc.12 DNA
programmed self-assembly of NPs with different shapes such
as rods, prism, triangles, octahedra, and dodecahedra have
shown typical anisotropic NPS such as hexagonal and lamellar10

as well as linear mesostructures.13

In this paper, we provide a characterization of the phase
diagram and the dynamics of nanocubes (NCs), one of the
simplest anisotropic nanoparticles, with attached ssDNA
strands. We consider hard cubes, the case of ssDNA without
complementary base pairs (an f-star polymer system) and with
complementary strands (standard hybridization), as shown in
Figure 1. The studies will be entirely conducted by the model
previously developed by our group:14 Because of its success in

predicting equilibrium phases for spherical NPs, both for equal
radii14 as well as different radii,15,16 1D structures of triangular
prisms17 and the dynamics of self-assembly,16,18 in all cases with
nearly perfect agreement with experiments and without fitting
parameters, the model has earned an obvious status as a very

Received: June 20, 2013
Published: December 10, 2013

Figure 1. (a) Representation of the three NC systems studied in this
paper: hard, f-star, and standard hybridization. (b) Cartoon of NC
showing parameters L, ns, nl, r, and normal vector Z⃗. (c) Example
Gauss map for a single NC showing normal vectors of a cube mapped
onto a sphere S2.
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diagrams were obtained by repeating entire compression runs
many times and using different compression rates as well as
cycles over compression and expansion runs to ensure that the
process was quasistatic and represented a succession of
equilibrium states.
The resulting phase diagram is shown in Figure 3 for

isotropic pressure for system sizes ranging from 54 to 1400
NCs. The case λ = 0 corresponds to hard cubes and includes an
I-Liquid and a C-sc phase only (see snapshot in Figure 5). As a
function of λ the C-sc phase becomes unstable, being replaced
by a triclinic (tric) phase (snapshots in Figure 5), first as an I-
tric(R), which converges to C-tric at higher packing densities.
The equation of state is shown in Figure 3b as a function of
packing fraction ϕ. There is a small change in slope of the
equation of state when there is coexistence as clusters of solid
particles begin to nucleate from the liquid (Figure 3b, middle),
and a discontinuity in the equation of state at the disorder−
order transition. Discrimination between the disorder and order
transition is provided by the g(r) (Figure 3b, bottom), which
shows a disordered distribution for the liquid and distinct peaks
for the ordered structure in I-tric(R). A snapshot of a C-tric
phase for N = 512 NC and λ = 0.66 is shown in Figure 4. Two

different orientational domains can be seen in the system,
denoted by red and blue colors. The unit cell for the C-tric is
drawn in Figure 4, where angles α ≠ β ≠ γ. It was found that
the angles α, β, and γ did not significantly change as a function
of packing fraction, ϕ, but did show considerable variation as a
function of polymer length λ. As λ grows larger, the triclinic
unit cell approaches the bcc limit seen in spherical NPs.14

Explicit results are provided in Supporting Information S8.
Within the NVT ensemble, compression runs may result in

anisotropic pressures pxx ≠ pyy ≠ pzz with off-diagonal terms
being zero. For the case of high anisotropic pressure, the phase
diagram shows surprising new phases (Figure 6a). For small λ a
B-bcc phase is formed, where each NC is oriented in one of the
four discrete orientations that define the Bakos four-cube
compound,33 see snapshots and Gauss map in Figure 5 (see
also Supporting Information S4 and S5). As λ is increased to
≳1, the B-bcc phase is replaced by an A-bcc (Anti-C) phase,
where cube orientations on a cone of aperture angle α around
the six orientations defined by C orientational order are not
allowed; see Figure 5 for snapshot and the ideal Gauss map in
Figure 2. The typical anisotropic pressures that develop in the
A-bcc (R) and B-bcc are shown in Figure 6b.
Phases with anisotropic pressure are only found in

simulations with up to 128 NCs, but we note that we did
not attempt to simulate larger systems (using the NPE
ensemble with Berendsen thermostat) as it is technically
challenging to stabilize large anisotropic pressures. However,
because we repeatedly obtained such phases regardless of
compression rates, these phases are stable and not an artifact of
the boundary conditions.
The rotational diffusion coefficients Da (defined in eq 3) are

plotted in Figure 7. It is clear that the NCs rotate considerably,
and this is denoted with (R), rotator phases, in the phase
diagram Figures 3 and 6. The variations of f6, f4, Da, and Qαβ as
functions of packing fraction are shown in Figure 7. The hard
NCs systems show a transition from an I-liquid to a C-sc with
no evidence for an intermediate liquid crystalline cubatic phase
within ϕ = 0.52−0.56 (Figure 3), in disagreement with19,20 but
consistent with the presence of vacancies recently reported in
ref 21, although the system sizes investigated are smaller.
We find that there is significant competition between

orientational and positional order in these systems. The system
either has bcc positional order which allows for four

Figure 3. (a) Phase diagram for f-star NCs as a function of λ and ϕ (defined in eq 1) for isotropic pressure. (b) Equation of state (top) and fraction
of solid particles (middle) as a function of packing fraction, ϕ, for a system of NCs, λ = 0.66, during the transition from liquid C-tric under
compression. (Bottom) g(r) for the liquid and crystal at points A and B before and after the disorder−order transition. All lines are drawn to guide
the eye.

Figure 4. Snapshot of f-star C-tric at λ = 0.66 and packing fraction ϕ =
0.45 for isotropic pressure. There are two orientational domains found
within the crystal, drawn as blue and red. Purple cubes are part of
defects which do not follow the red or blue domains. The polymer is
hidden for clarity. (Top right) Unit cell for C-tric showing blue cube
orientation. (Bottom right) Definition of the primitive vectors.
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shifted peaks arise (red curve) due to the symmetry of the en-
larged 41 knot (compare with Fig. 1B).
We can also derive an estimate for the “topological” free

energy barrier, which needs to be overcome in a “knot swapping”
event. This barrier essentially accounts for the obstruction caused
by entanglements. In Fig. 2B we have accumulated data from
simulations as shown in Fig. 2A to obtain a histogram of the time
series and a corresponding probability distribution. For κ = 20
kBT, the most likely state is the combined state, whereas the
separated states are metastable.
From Fig. 2B, the “topological” free energy is derived as

F =−kBT lnðPÞ. When the separated states are stable (as for flexible
chains with κ = 0 kBT in Fig. 3A), the system first needs to over-
come a barrier,ΔF1 =−kBT ln½Pðentrance to intertwined stateÞ=
Pðseparated stateÞ$, to reach the metastable intertwined state. Then
a second barrier, ΔF2 =−kBT ln½Pðentrance tointertwined stateÞ=
Pðintertwined stateÞ$, needs to be overcome to finally swap posi-
tions or go back to the original state. If the intertwined state is
stable (as in κ = 20 kBT in Fig. 3B), the system needs to overcome
ΔF2 to escape into the metastable separated state. In all cases, the
barriers only amount to 2–5 kBT, which would be accessible in
experiments. Can we alter this barrier? Fig. 3A shows free energy
profiles from simulations with different angular stiffness at the
same wall distance. While, in the case of the lowest stiffness, the
separated states are more likely, the intertwined state is more
probable at larger stiffnesses as indicated above. Fig. 3B also shows
free energy profiles from simulations in which the walls were
placed closer together (to 0:5Ree and 0:75Ree). While the free
energy barrier decreases only slightly for 0:75Ree, the separated
states nearly vanish when the two knots are pushed together by the
smaller distance of the walls (at 0:5Ree).

Discussion and Conclusion
In conclusion, we present a mechanism that allows for two molec-
ular knots to diffuse through each other and swap positions along
a strand. The corresponding free energy barrier in our simulations
only amounts to a few kBT and should be attainable in experiments
similar to ref. 17 (with loose composite knots) and, potentially, in
vivo. The barrier can be altered by changing the chain stiffness as
well as the wall distance to make the “tunneling” event more or less
probable. To what extent this peculiar diffusion mechanism might
affect DNA behavior in nano-manipulation experiments will be
investigated in future studies. Materials and Methods

Model and Simulation Details. Themodelwe apply is essentially a discrete variant
of the well-known worm-like chain model (with excluded volume interactions),
which has been used extensively to characterize mechanical properties of DNA
(25, 26, 32, 33). We start with a standard bead-spring polymer model from ref.
28, which does not allow for bond crossings. All beads interact via a cut and
shifted Lennard−Jones potential (Eq. 1). Adjacent monomers interact via the
finitely extensible nonlinear elastic (FENE) potential (Eq. 2). Chain stiffness is
implemented via a bond angle potential (Eq. 3), where angle θi is measured
between the beads i−1, i, and i+ 1. For the interaction with the wall, we also
apply the repulsive part of the Lennard−Jones potential (Eq. 4), where di is the
orthogonal distance from the respective wall to bead i. For simplicity, we define
the normal vector of the walls to coincide with the x axis of our system.
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Fig. 1. (Left) Snapshot pictures taken before (A), while (B), and after (C) 31
(green) and the 41 (red) knots interchange positions along the strand. (Right)
Simplified representation.

A B

C D

Fig. 2. (A) Distance between the respective “knot centers” as a function of
simulation time. The positions around +100 correspond to configurations in
which the two knots are separated. At −100, the knots are also separated, but
positions along the strand are interchanged. The transition region in which the
knots are entangled and pass through each other is located around 0. (B) Cor-
responding probability profile (blue) obtained fromA. Interestingly, a triple peak
forms in the intertwined state. Simulations in which the 41 knot passes through
the enlarged 31 knot only contribute a single peak (green), while, for the op-
posite situation, two peaks arise (red). (C) “Size” of the trefoil (green) and the
figure-eight knot (red) as a function of simulation time. The same section was
chosen as in A. “Swapping events” and attempted events are accompanied by
a considerable enlargement of one of the two knots to around the combined
equilibrium size of both knots (blue line), while the other knot, which diffuses
along the big knot, only grows a bit. (D) Corresponding probability profile
obtained from C. The data shown in A and C are smoothed by applying a run-
ning average. For details and implications, see Materials and Methods. Fig. S1
also shows the raw data.
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Universality of Block Copolymer Melts

191 There is a small but measurable discontinuity Δg0 in g0

192 across the ODT in Fig. 1, as expected for a first-order
193 transition. The smallness of the discontinuity (Δg0 ≃ 0.008,
194 or 7%) indicates that the degree of AB contact is similar in
195 the disordered and ordered phases near the ODT. This
196 suggests that the disordered phase has a local structure
197 rather similar to that of the ordered phase, with well-defined
198 A and B domains and a similar AB interfacial area per
199 volume, but without long-range order. The SCFT predic-
200 tion for g0ðχeNÞ (dashed line) is given by the spatial average
201 of the product ϕAðrÞϕBðrÞ of the predicted local volume
202 fractions of A and Bmonomers. This yields g0 ¼ 0.25 in the
203 disordered phase, at χeN < 10.495. Interestingly, SCFT
204 predictions for g0 are poor in the disordered phase near the
205 ODT but show excellent agreement with simulations in the
206 ordered phase. SCFT thus accurately predicts the extent of
207 AB contact within the ordered phase but is intrinsically
208 incapable of handling the strong short-range correlations in
209 the disordered phase.
210 Figure 2 shows the free energy per chain g vs χeN for four
211 values of N̄. These were calculated by numerically integrat-
212 ing simulation results for ∂g=∂α within each phase, setting
213 g ¼ 0 at α ¼ 0 by convention, and equating values of g in
214 the two phases at the observed ODT. Three of the plots show
215 overlapping results for pairs of simulations with matched
216 values of N̄, again demonstrating universality. In the range
217 10.495 < χeN < ðχeNÞODT in which the disordered phase
218 develops strong correlations, simulation results fall well
219 below the SCFT prediction for a homogeneous phase
220 (the straight line) and actually lie much closer to SCFT
221 predictions for the ordered phase. Interestingly, SCFT
222 predictions for g are rather accurate within the ordered
223 phase for all but the lowest value of N̄ shown here and seem
224 to become more so with increasing N̄. This agreement does
225 not follow trivially from the observed accuracy of SCFT
226 predictions for g0 in the ordered phase, since the value of g at

227the ODT has been calculated by integrating ∂g=∂α through
228the disordered phase, in which SCFT predictions for g0 are
229poor. Physically, the main components of g are free energies
230arising from AB contact and chain stretching. Only the
231extent of AB contact is directly reflected by the value of g0.
232Our results thus imply that SCFT accurately describes both
233main components of g in the ordered phase, although not in
234the disordered phase near the ODT.
235The main plot of Fig. 3 shows a compilation of results for
236ðχeNÞODT from all simulations plotted vs N̄, using our
237nonlinear fits for χeðαÞ. The inset shows a corresponding
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in which ∑j is a sum over all particles in a system, rj is the
position of particle j, and ϵj = ±1 is a prefactor of +1 for A
particles and −1 for B particles. The choice of the cutoff
function f(q) is somewhat arbitrary. We took f(q) to be a
modified Fermi function f(q) = {1+ exp[12(q − qc)/qc]}

−1 with
a cutoff wavenumber qc slightly larger than the peak
wavenumber q*.
Equation 16 defines a generalized norm for composition

fluctuations. Choosing n = 2 yields a Euclidean norm. This
choice was found to not yield adequate discrimination between
the ordered and disordered phases. Increasing n tends to
increase the difference between the values of Ψ characteristic of
the ordered and disordered phases. Taking n → ∞ yields the
maximum value of |ψ(q)|, which maximizes discrimination
between the ordered and disordered phases, but is not usable
because it does not yield a differentiable function of the particle
positions. We chose an exponent n = 4 because it was the
lowest even value of n that provided adequate discrimination
between the ordered and disordered phases.
Because metadynamics simulations sample both ordered and

disordered configurations, these simulations were carried out
using a cubic L × L × L unit cell. To minimize artifacts arising
from incommensurability, the number of molecules M used for
these simulations was chosen so as to yield a commensurate cell
for a 3-layer system ordered in the {300} orientation, using our
best estimate of the true equilibrium layer spacing and
monomer concentration in the ordered phase at the ODT
from tetragonal NPT simulations conducted very near the
ODT. For this choice of unit cell dimensions, ordered
configurations oriented with primary wavevectors in the
{300} or {221} families all yielding a layer spacing d = L/3
nearly equal to the preferred spacing. In our WTM simulations,
ordered configurations were found to spontaneously orient
along both of these families of Miller planes, with no obvious
preference for either family of orientations.
Well-tempered metadynamics in an NPT ensemble provides

an estimate of the free energy G(Ψ) of a system with a
constrained value of the collective variable Ψ. The value αODT
of α at the phase transition was identified for each system using
an equal area construction, by requiring that regions near the
ordered and disordered minima in G(ψ) yield equal
contributions to the integral ∫ dΨe−G(Ψ,α)/kT, corresponding to
equal probabilities in an unbiased simulation. Figure 3 shows an
example of the converged free energy G(Ψ) and equilibrium
probability distribution P(Ψ) for system S1-32 at the ODT.

Efficient calculation of the forces that arise from this choice
of collective variable required the implementation of a particle-
mesh Ewald method to evaluate Fourier components. To
reduce the number of values of α at which we needed to carry
out metadynamics calculations, we used perturbation theory to
extrapolate results for G(Ψ,α) over a narrow range of values of
α centered around the value used in the simulation (see the
Supporting Information of ref 8). These and other details of
our metadynamics algorithm will be discussed in a separate
article that is now in preparation.

D. Estimating χe(α). The perturbative linear approximation
yields an approximation χe

(1)(α) = zα/kBT in which the
coefficient z for each model is obtained from simulations of
homopolymer (α = 0) liquids of varying chain length, as
described in detail elsewhere.7,65

The nonlinear approximation for χe(α) that we use here was
obtained for each model from a simultaneous fit of the ROL
theory to results for peak structure factor S(q*) in the
disordered phase from simulations of several chain lengths,
exactly as done in ref 7. The data for each model was fit using
an assumed functional form

χ α α α
α α

= ̂ + ̂
+ ̂ + ̂
z a

d d
( )

1e
2

2

1 2
2

(18)

where α̂ ≡ α/kBT, in which the coefficient d2 was set to zero for
models S1, S2, and S3 but is nonzero for model H. The
coefficient z has the value obtained from the perturbative linear
approximation, in order to constrain the fit to agree with results
of perturbation theory in the limit α̂ → 0. The fit thus involved
two adjustable parameters for models S1, S2, and S3 (a2 and
d1) and three adjustable parameters for model H (a2, d1, and
d2). The reason for the choice of different functional forms for
model H than for the soft models is discussed in ref 7.
All simulations used for this purpose were NPT simulations

of the disordered phase in a cubic simulation cell. These
included systems with chains of lengths N = 16, 32, 64, and 128
for all models and N = 12 for models S1, S2, and S3.
Simulations of the shortest chains, with N = 12 for models S1,
S2, and S3 and N = 16 and 32 for model H, were used here
only for the purposes of determining χe(α) over a wider range
of values of α than would otherwise be possible and were not
used in our studies of the ODT and other properties. We note
that this fitting procedure is not particularly sensitive to the
behavior of S(q) very near the ODT, or the accuracy of the
ROL theory in this regime, because the vast majority of the data
used in the fit was obtained far from the ODT, where the ROL
theory is most accurate and where the fit is most strongly
constrained by our use of perturbation theory. To avoid
artifacts arising from finite size effects, results for S(q) obtained
very near the ODT were also excluded from the fit, as discussed
in ref 7.
Examples of the quality of the fit to results for the quantity

cNS−1(q*) are shown for NVT simulations of models H and S1
in ref 7. Plots of the resulting estimates of χe(α) are shown in
Figure 4. Values of the parameters z, a2, d1, and (for model H)
d2 that appear in eq 18, and further details of the calibration and
fitting of each model are given in the Supporting Information of
ref 8. Slightly different values for the coefficients for models H
and S1 were obtained from the NPT simulations reported here
and in ref 8 than those reported in ref 7 for corresponding
NVT simulations. This is because the actual monomer
concentration in each NPT simulation is slightly different

Figure 3. Constrained Gibbs free energy G/kBT as a function of the
order parameter Ψ for model S1-32 at α = αODT measured by well-
tempered metadynamics. Inset: corresponding probability distribution
P(Ψ) = exp(−G/kBT)/∫ exp(−G/kBT).
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perturbative linear estimate χe
(1)(α) = zα/kBT to plot g′ vs χeN.

With this approximation, agreement between the two models is
poor. Most notably, estimated values of χeN at the ODT,
shown by arrows, differ dramatically. Results for g′ itself agree
only for χeN ≃ 0, where the linear approximation for χe

(1)

becomes exact. This comparison and others like it show that a
linear approximation for χe(α) is generally not adequate for
analyzing simulations data near the ODT, except for systems of
very long chains.
Figure 6 shows corresponding plots of g′ vs χeN constructed

using the nonlinear estimate of χe(α) obtained for each model
by fitting S(q) in the disordered phase. The upper three panels
show results for pairs of simulations of different models with
nearly matched values of N̅ ≃ 240, 960, and 3840, respectively.
The last panel shows results for system S3-64, for which N̅ ≃
7680. In the first three plots, agreement between simulations
with matched values of N̅ is excellent. Our success in collapsing
the data in the first three plots verifies both the hypothesized
universality of g(χeN,N̅) and the accuracy of our method of
estimating χe(α).
In these plots, the SCFT prediction of the value (χeN)ODT =

10.5 is marked by a vertical dotted line. The actual ODT, as
identified by metadynamics, is identified by a small
discontinuity in the value of g′ and is marked in each plot by
a vertical dashed line. In plots a−c, excellent agreement is
obtained for values of (χeN)ODT for pairs of systems with
matched values of N̅. In these plots, the vertical line shows the
value of (χeN)ODT for the member of the pair with larger value
for N.
The SCFT prediction for g′(χeN) is shown in each plot by a

dashed line, which has a constant value g′ = 0.25 for χeN < 10.5
and decreases with increasing χeN at higher χeN. This
prediction for g′ is a measure of the degree of AB contact,
which is given by the spatial average g′ ≡ ϕ ϕA B of the product
ϕA(r)ϕB(r) of the predicted local volume fractions of A and B
monomers. In the disordered phase of a symmetric diblock
copolymer, where ϕA(r) = ϕB(r) = 1/2 everywhere, this yields
g′ = ϕAϕB = 0.25. In the ordered phase, g′ decreases with
increasing χeN as the degree of AB contact decreases due to an
increase in the ratio of the domain spacing to the width of an
individual interface. The SCFT prediction for g′ is continuous
at the predicted ODT because SCFT predicts a continuous
(second-order) phase transition.
Agreement between simulation results and SCFT predictions

for g′ is mediocre in the disordered phase, particularly near the
ODT and for small values of N̅. The fact that g′ < 0.25 near the
ODT is a consequence of composition fluctuations that
decrease the extent of AB contact near the ODT. The fact
that g′ > 0.25 at χeN = 0 is a more subtle packing effect, which
is a result of the fact that the probability of intermolecular AB
contact increases with decreasing chain length even when α = 0,
as discussed for polymer blends in ref 62.
Somewhat surprisingly, however, simulations results and

SCFT predictions for g′ are in excellent agreement in the
ordered phase near the ODT. Agreement appears to be
particularly good in the ordered phase at low and intermediate
values of N̅ (plots a−c). A slightly larger discrepancy appears at
the highest value of N̅ = 7680. The results suggest that SCFT,
when combined with an adequate method of estimating χe,
provides a surprisingly good quantitative description of the
structure of the ordered phase in the intermediate segregation
regime studied here. We assume that the accuracy near the

ODT is actually better for lower values of N̅ because SCFT is
most appropriate for comparatively strongly segregated ordered
states or values of χeN that are not too close to the SCFT
critical value of 10.5, while the value of χeN at the ODT
increases with decreasing N̅.
The value of g′ is discontinuous at the ODT, as discussed in

greater length in subsection IVD. The fact that the magnitude
of this discontinuity is rather small suggests that the disordered

Figure 6. Plots of g′ ≡ ∂g/∂(χeN) vs χeN for different N̅ values. The
dashed curves represent SCFT predictions for g′(χeN) in the
disordered and ordered phases. In each plot, the dashed and dotted
vertical lines indicate the measured ODT and the SCFT prediction,
respectively. In plots a−c, which display results for two systems, the
ODT is shown for the system with larger N.
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Spatial domain decomposition

• Particles can leave and enter 
domains under periodic boundary 
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Scaling bottlenecks in spatial domain decomposition
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Optimization of the communication algorithm

• Device-resident data

• Autotune kernels

• Overlap synchronization with computation
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Weak scaling up to 108,000,000 particles

32,000 particles/GPU

●

● ●
● ● ● ● ● ●●

●

■
■ ■ ■ ■ ■ ■ ■ ■ ■

■

weak scaling

● HOOMD-blue 1.0
■ LAMMPS-GPU 11Nov13

1 2 5 10 20 50100 1000
100

200

500

1000

2000

# of GPUs (= # of nodes)

tim
e
st
ep
s/
se
c.

Trung Nguyen



THE GLOTZER GROUP

Strong Scaling of a LJ Liquid (N=10,976,000)
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Strong Scaling Efficiency
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Polymer Brush Scaling
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GPUDirect RDMA on Wilkes
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Fig. 11. Strong scaling benchmark for a GPUDirect RDMA benchmark of N =
64,000 particles LJ liquid benchmark on the Wilkes GPU cluster, comparing default
host-memory MPI, CUDA-aware MPI, and CUDA-aware MPI with GPUDirect RDMA
(GDR) using MVAPICH 2.0 GDR (experimental). Shown is the performance in
number of time steps per second vs. number of GPUs, for single precision (top) and
double-precision (bottom) runs.

Fig. 12. Distribution of message sizes for the benchmark of Fig. 11 (lower
panel). Shown is the cumulative relative frequency of message sizes in neighbor
communication (MPI_Isend/recv) in double-precision runs, for different numbers
of GPUs, obtained with the IPM tool [54]. Inset: Maximum message size in kB
as function of the number P of GPUs, in single (light shaded/yellow) and double
precision (dark shaded/blue).

benchmark, for which data is shown in Fig. 11 (bottom panel).
The distribution has multiple ‘knees’, which are characteristic
of the communication pattern described in Section 4.3.1. The
precise location of these knees depends on the details of the
domain decomposition, however the maximum message size
affects performance through various internal thresholds of the
MPI library. In the case of GPUDirect RDMA, we were able to
use maximum optimal thresholds of 32 KB, above which the MPI
library switches to default pipelined communication. Interestingly,
this limit is reached with at least eight GPUs in single precision, or
16 GPUs in double precision, for the N = 64,000 LJ benchmark,
as shown in Fig. 12, inset. We confirm that for these minimum

Fig. 13. Strong scaling of a double-precision LJ liquid benchmark of N = 2097,152
particles comparing the performance of HOOMD-blue performance (with GDR or
with host memory MPI) and of LAMMPS-Kokkos (with GDR), on P = 1 . . . 8 GPUs.
Shown is performance in time steps per second vs. number of GPUs.

numbers of GPUs the GPUDirect RDMA enabled benchmarks
indeedperform superior to CUDA-awareMPI (Fig. 11), however the
effective performance is in the range of the optimizedhostmemory
implementation.

8.3. Performance comparison to a CUDA-aware MPI enabled port of
LAMMPS

To assess whether HOOMD-blue makes optimal use of the
CUDA-aware MPI based communication protocols, we compare
against another port of LAMMPS on GPUs, LAMMPS-Kokkos, a
recent alternative to LAMMPS-GPU. The Kokkos package inside
LAMMPS is a forward looking capability with support for other
accelerators (Intel Xeon Phi), but with very limited feature support
at themoment. The package supersedes a previous port of LAMMPS
onGPUs, LAMMPS-CUDA [4]. It also offers support for CUDA-aware
MPI implementations, which makes it interesting to compare to
HOOMD-blue performance here.

As a benchmark system we choose the double precision LJ
system benchmark supplied with the Kokkos package (NVE, N =
2097,152, �t = 0.005, rbuff = 0.3, rcut = 2.5, ✏ = � = 1.0),
with the only change that we increase the neighbor list build
frequency to every six time steps, to ensure correct computation
of forces. The corresponding HOOMD-blue simulations start from
the same fcc lattice initial configuration (thermalized at T =
1.44), additionally equilibrated over 30,000 time steps. For the
HOOMD-blue simulations we choose the optimal value of rbuff
and the distance check interval by prior tuning. Fig. 13 shows
the performance of the Kokkos package, where LAMMPS is
run in device communication mode and with GPUDirect RDMA
enabled, and for different build and runtime settings of HOOMD-
blue. The agreement of single-node performance emphasizes that
both Kokkos and HOOMD-blue are essentially fully optimized
for simulations at this particle number, where they are mostly
limited by device memory bandwidth. On the other hand, on eight
nodes the GDR version of HOOMD-blue performs better than the
Kokkos package by a factor of about 1.4, which we attribute to
the optimizations of the communication algorithm described in
Section 4.3.

9. Strong scaling of a DPD benchmark

We also compare dissipative particle dynamics (DPD) perfor-
mance between HOOMD-blue and two other codes. The commu-
nication pattern differs from that of LJ in two ways. Velocities of
ghost particles need to be communicated, in order to compute the
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numbers of GPUs the GPUDirect RDMA enabled benchmarks
indeedperform superior to CUDA-awareMPI (Fig. 11), however the
effective performance is in the range of the optimizedhostmemory
implementation.

8.3. Performance comparison to a CUDA-aware MPI enabled port of
LAMMPS

To assess whether HOOMD-blue makes optimal use of the
CUDA-aware MPI based communication protocols, we compare
against another port of LAMMPS on GPUs, LAMMPS-Kokkos, a
recent alternative to LAMMPS-GPU. The Kokkos package inside
LAMMPS is a forward looking capability with support for other
accelerators (Intel Xeon Phi), but with very limited feature support
at themoment. The package supersedes a previous port of LAMMPS
onGPUs, LAMMPS-CUDA [4]. It also offers support for CUDA-aware
MPI implementations, which makes it interesting to compare to
HOOMD-blue performance here.

As a benchmark system we choose the double precision LJ
system benchmark supplied with the Kokkos package (NVE, N =
2097,152, �t = 0.005, rbuff = 0.3, rcut = 2.5, ✏ = � = 1.0),
with the only change that we increase the neighbor list build
frequency to every six time steps, to ensure correct computation
of forces. The corresponding HOOMD-blue simulations start from
the same fcc lattice initial configuration (thermalized at T =
1.44), additionally equilibrated over 30,000 time steps. For the
HOOMD-blue simulations we choose the optimal value of rbuff
and the distance check interval by prior tuning. Fig. 13 shows
the performance of the Kokkos package, where LAMMPS is
run in device communication mode and with GPUDirect RDMA
enabled, and for different build and runtime settings of HOOMD-
blue. The agreement of single-node performance emphasizes that
both Kokkos and HOOMD-blue are essentially fully optimized
for simulations at this particle number, where they are mostly
limited by device memory bandwidth. On the other hand, on eight
nodes the GDR version of HOOMD-blue performs better than the
Kokkos package by a factor of about 1.4, which we attribute to
the optimizations of the communication algorithm described in
Section 4.3.

9. Strong scaling of a DPD benchmark

We also compare dissipative particle dynamics (DPD) perfor-
mance between HOOMD-blue and two other codes. The commu-
nication pattern differs from that of LJ in two ways. Velocities of
ghost particles need to be communicated, in order to compute the
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Fig. 11. Strong scaling benchmark for a GPUDirect RDMA benchmark of N =
64,000 particles LJ liquid benchmark on the Wilkes GPU cluster, comparing default
host-memory MPI, CUDA-aware MPI, and CUDA-aware MPI with GPUDirect RDMA
(GDR) using MVAPICH 2.0 GDR (experimental). Shown is the performance in
number of time steps per second vs. number of GPUs, for single precision (top) and
double-precision (bottom) runs.
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panel). Shown is the cumulative relative frequency of message sizes in neighbor
communication (MPI_Isend/recv) in double-precision runs, for different numbers
of GPUs, obtained with the IPM tool [54]. Inset: Maximum message size in kB
as function of the number P of GPUs, in single (light shaded/yellow) and double
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The distribution has multiple ‘knees’, which are characteristic
of the communication pattern described in Section 4.3.1. The
precise location of these knees depends on the details of the
domain decomposition, however the maximum message size
affects performance through various internal thresholds of the
MPI library. In the case of GPUDirect RDMA, we were able to
use maximum optimal thresholds of 32 KB, above which the MPI
library switches to default pipelined communication. Interestingly,
this limit is reached with at least eight GPUs in single precision, or
16 GPUs in double precision, for the N = 64,000 LJ benchmark,
as shown in Fig. 12, inset. We confirm that for these minimum

Fig. 13. Strong scaling of a double-precision LJ liquid benchmark of N = 2097,152
particles comparing the performance of HOOMD-blue performance (with GDR or
with host memory MPI) and of LAMMPS-Kokkos (with GDR), on P = 1 . . . 8 GPUs.
Shown is performance in time steps per second vs. number of GPUs.

numbers of GPUs the GPUDirect RDMA enabled benchmarks
indeedperform superior to CUDA-awareMPI (Fig. 11), however the
effective performance is in the range of the optimizedhostmemory
implementation.

8.3. Performance comparison to a CUDA-aware MPI enabled port of
LAMMPS

To assess whether HOOMD-blue makes optimal use of the
CUDA-aware MPI based communication protocols, we compare
against another port of LAMMPS on GPUs, LAMMPS-Kokkos, a
recent alternative to LAMMPS-GPU. The Kokkos package inside
LAMMPS is a forward looking capability with support for other
accelerators (Intel Xeon Phi), but with very limited feature support
at themoment. The package supersedes a previous port of LAMMPS
onGPUs, LAMMPS-CUDA [4]. It also offers support for CUDA-aware
MPI implementations, which makes it interesting to compare to
HOOMD-blue performance here.

As a benchmark system we choose the double precision LJ
system benchmark supplied with the Kokkos package (NVE, N =
2097,152, �t = 0.005, rbuff = 0.3, rcut = 2.5, ✏ = � = 1.0),
with the only change that we increase the neighbor list build
frequency to every six time steps, to ensure correct computation
of forces. The corresponding HOOMD-blue simulations start from
the same fcc lattice initial configuration (thermalized at T =
1.44), additionally equilibrated over 30,000 time steps. For the
HOOMD-blue simulations we choose the optimal value of rbuff
and the distance check interval by prior tuning. Fig. 13 shows
the performance of the Kokkos package, where LAMMPS is
run in device communication mode and with GPUDirect RDMA
enabled, and for different build and runtime settings of HOOMD-
blue. The agreement of single-node performance emphasizes that
both Kokkos and HOOMD-blue are essentially fully optimized
for simulations at this particle number, where they are mostly
limited by device memory bandwidth. On the other hand, on eight
nodes the GDR version of HOOMD-blue performs better than the
Kokkos package by a factor of about 1.4, which we attribute to
the optimizations of the communication algorithm described in
Section 4.3.

9. Strong scaling of a DPD benchmark

We also compare dissipative particle dynamics (DPD) perfor-
mance between HOOMD-blue and two other codes. The commu-
nication pattern differs from that of LJ in two ways. Velocities of
ghost particles need to be communicated, in order to compute the
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Dissipative Particle Dynamics on Blue Waters and Titan
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Fig. 14. Strong scaling performance of a DPD benchmark of N = 2000,000
particles, comparing HOOMD-blue, LAMMPS USER-MESO and LAMMPS-GPU.
Shown is the number of time steps per second, vs. number of GPUs, for P =
1 . . . 1024 GPUs.

drag term in theDPD force. Hence, twice the amount of data is com-
municated per time step. Moreover, to correctly seed per-particle-
pair random number generators [41], global particle IDs of ghost
particles additionally need to be communicated with every ghost
exchange. Recently, Tang and Karniadakis [6] presented a GPU-
optimized implementation of DPD, validated and benchmarked on
the Titan supercomputer. They demonstrate excellent strong scal-
ing properties. The software is available within LAMMPS as the
USER-MESO package [55].

Here, we compare HOOMD-blue performance on the Cray XK7
to the benchmark numbers reported in Ref. [6] (Fig. 14 therein),
for the same benchmark of N = 2000,000 particles. We also com-
pare to LAMMPS-GPU performance [56]. The simulation details
are: �t = 0.005 at number density ⇢ = 3, and with DPD param-
eters A = 25, � = 4.5. HOOMD-blue and LAMMPS-GPU use full
double precision, the USER-MESO package is run in mixed preci-
sion: communication is performed in double precision, but node
local force evaluations are performed in single precision. As in the
previous benchmarks, HOOMD-blue performance was optimized
by tuning the value rbuff and the distance check period. The number
of time steps per second was measured after an additional warm-
up of 30,000 time steps, averaged over 50,000 steps. LAMMPS-GPU
and USER-MESO benchmarks were performed on Titan, HOOMD-
blue benchmarks were performed on the Blue Waters machine at
the National Center for Supercomputing Applications. Even though
this machine has the same architecture as Titan (Cray XK7), we
expect slight differences in performance, from differences in sys-
tem software and network configuration. Fig. 14 shows the num-
ber of time steps per second as a function of the number of GPUs in
strong scaling, on up to 1,024 GPUs. Performance values are max-
ima from several runs (up to 10% variability was observed for large
runs). Remarkably, the performance of HOOMD-blue parallels that
of the USER-MESO package over the whole range of numbers of
GPUs and appears to be only slightly superior (15%), but outper-
forms LAMMPS-GPU for small (.32) numbers of GPUs. However,
for larger numbers of nodes the performance between the codes is
comparable, which we attribute to the difference in communica-
tion patterns of DPD vs. LJ, where for DPD in double precision, an
amount of data four times larger is communicated than for LJ in sin-
gle precision. The DPD benchmark is therefore less sensitive to the
latency optimizations we focus on in this contribution, and given
that it is likely bandwidth-bound, further underscores that with
GPUs the communication bandwidth of current system architec-
tures, along with various sources of latency, has become the main
limiting factor of MD performance.

10. Conclusion and outlook

We gave a detailed account of how we ported HOOMD-blue
to a distributed memory model (MPI). Because HOOMD-blue is a
fully GPU-enabled code, a particular challenge was presented by
the latency of device-to-device communication.We addressed this
challenge using a highly optimized communication algorithm. Our
communication routines are implemented on the GPU to reduce
the amount of data transferred over PCIe and allow us to take
advantage of CUDA-aware MPI libraries. We also optimized for
strong scaling on thousands of GPUs, which we achieved using a
design for the neighbor list and force computation kernels based
on cooperative thread arrays and an auto-tuning algorithm.

We evaluate the performance of our code in terms of both
weak and strong scaling benchmarks, for which we compared it to
similarly optimized implementations of GPU-enabledMD, and find
HOOMD-blue performance to be equivalent or superior. HOOMD-
blue exhibits qualitatively similar scaling behavior to these other
codes, indicating that our optimizations are successful, and that
the scaling limits inherent to the underlying architecture have
been reached. We note that the GPU-centric design of HOOMD-
blue is different from othermore traditionalMD codes, which have
started as CPU-only codes.

In the case of GPUDirect RDMA, we find superior performance
in double precision benchmarks, demonstrating the usefulness of
the technology, especially in strong scaling situations, however
also its current limitations. To further improve strong scaling
performance, latency and bandwidth bottlenecks will have to
be reduced. Moreover, a closer integration of the GPU into the
communication path seems realistic, such as to provide the
capability of GPU kernel call-backs from MPI calls. In general,
we anticipate that future designs will tightly couple GPUs as
throughput-optimized and CPUs as latency-optimized compute
components, and optimal code performance will depend on
high-bandwidth links and unified memory space between the
processors [57], to achieve greater concurrency.

In this first 1.0 release of HOOMD-blue with MPI, we
did not enable multi-GPU support for electrostatics calculations,
rigid bodies or anisotropic particles, available only in single-
GPU simulations. We expect to implement these capabilities in
future versions. The current implementation exclusively relies on
spatial domain decomposition as a work distribution technique
and thus applies to mostly homogeneous systems, whereas
sophisticated load-balancing schemes have been implemented for
more inhomogeneous or biomolecular systems [58,59,31] on CPUs,
and they should additionally benefit from GPU acceleration.

More broadly, our study further establishes GPUs as extremely
fast engines for MD simulation compared to traditional CPU cores.
GPUs not only realize an order of magnitude speed-up over
current-generation CPUs, but they also scale verywell using spatial
domain decomposition. Hence, our and comparable codes there-
fore both greatly benefit from the unprecedented performance of-
fered by these fast processors, and at the same time they push the
envelope of current systemdesigns. Since the speed-ups presented
here rely chiefly on exploiting parallelism at various levels, i.e. by
using GPUs on the node-level, and by scaling the code up to many
nodes, we provide a very clear case for how parallelism can be the
main enabling strategy in computational physics discovery.

Acknowledgments

We gratefully acknowledge helpful discussions with Davide
Rosetti, Yu-Hang Tang, Dhabaleswar K. Panda, and Christian Trott.
We thank Rong Shi for providing benchmark data for GPUDirect
RDMA in single precision.



THE GLOTZER GROUP

Summary - Molecular Dynamics

• Multi-GPU support in HOOMD 1.0 enables large-
scale MD using spatial domain decomposition  

• Strong Scaling extends to 1000’s of GPUs, and to 
more complex systems 

• GPUDirect RDMA is a promising technology, 
although strong scaling is ultimately limited by 
PCIe and kernel launch latency

Glaser J., Nguyen T.D., Anderson J.A. et al. 
Strong scaling of general-purpose molecular dynamics simulations on GPUs.

Comput. Phys. Commun. 192, pp. 97-107 (2015) 
doi:10.1016/j.cpc.2015.02.028.
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Molecular dynamics

Tethered nanospheres
Langevin dynamics

Marson, R, Nano Letters 14, 4, 2014

Surfactant coated surfaces 
Dissipative particle dynamics

Pons-Siepermann, I. C., Soft matter 6 3919 (2012)

Self-propelled colloids
Non-equilibrium MD

Nguyen N., Phys Rev E 86 1, 2012

Truncated Tetrahedra
Hard particle MC

Damasceno, P. F. et al., ACS Nano 6, 609 (2012)

Arbitrary polyhedra
Hard particle MC

Damasceno, P. F. et al., Science 337, 453 (2012)

Interacting nanoplates
Hard particle MC with interactions

Hard disks - hexatic
 Hard particle MC

Engel M. et al., PRE 87, 042134 (2013)Ye X. et al., Nature Chemistry cover article (2013)

Monte Carlo

Quasicrystal growth
Molecular Dynamics

Engel M. et al., Nature Materials (in press)
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Hard particle Monte Carlo

• Hard Particle Monte Carlo plugin for 
HOOMD-blue 

• 2D Shapes 
• Disk 
• Convex (Sphero)polygon 
• Concave polygon 
• Ellipse 

• 3D Shapes 
• Sphere 
• Ellipsoid 
• Convex (Sphero)polyhedon 

• NVT and NPT ensembles 
• Frenkel-Ladd free energy 
• Parallel execution on a single GPU 
• Domain decomposition across 

multiple nodes (CPUs or GPUs)
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cP20 (A13)
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Damasceno et al., Science (2012)

Engel M. et al., PRE 87, 042134 (2013)

Damasceno, P. F. et al., ACS Nano 6, 609 (2012)

Damasceno et al., Science (2012)
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Easy and flexible to use

from hoomd_script import *
from hoomd_plugins import hpmc

init.read_xml(filename=‘init.xml’)

mc = hpmc.integrate.convex_polygon(seed=10, d=0.25, a=0.3);
mc.shape_param.set('A', vertices=[(-0.5, -0.5), (0.5, -0.5),
                                  (0.5, 0.5), (-0.5, 0.5)]);

run(10e3)
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Overlap checks
• Disk/sphere - trivial 
• Convex polygons - separating axis 
• Concave polygons - brute force 
• Spheropolygons -  XenoCollide/GJK 
• Convex polyhedra -  XenoCollide/GJK 
• Ellipsoid / Ellipse: Matrix method 
• Compute delta in double, convert to 

single for expensive overlap check

⊖
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Separating axis

XenoCollide

1001.842 - 1000.967 = 0.875
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Divergence
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Strong scaling - squares GPU: Tesla K20X, CPU: Xeon E5-2680 (XSEDE Stampede)
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Weak scaling - truncated octahedra (3D)
GPU: Tesla K20X on Cray XK7, CPU: AMD bulldozer on Cray XE6

1.6x

5

6

7

8

T
r
i
a
l
s
m
o
v
e
s
/
N

/
s
e
c

8 27 64 125 216 343 512 1000

Nodes

XK7

XE6



THE GLOTZER 
GROUP

Questions?
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email: joaander@umich.edu

HOOMD-blue: http://codeblue.umich.edu/hoomd-blue 
Monte Carlo code not yet publicly available.  

• It will eventually be released open-source as part of HOOMD-blue  
• Paper on hard disks: Anderson, J. A. et al., JCP 254, 27-38 (2013) 
• Paper on 3D, anisotropic shapes, multi-GPU: coming soon


