
the use of a wide, sparse distribution of nodes
assigned to the same job across the system.

The sheer size of the data footprint can create
an infrastructure bottleneck. We are automating
the output data archiving and ingestion of input
streams, and offloading the output streams onto
the target destinations to emulate the real-
world case of genome data being streamed from
sequencing facilities back to the medical centers.

Re-sorting aligned files by read position or by
location along the genome is a common task that
has to be done in a number of places along the
variant calling workflow. The fastest algorithm,
to our knowledge, is Novosort [5], which involves
two phases. The first phase sorts as much data
as possible in memory and then writes segments
of sorted records to temporary disk files. The
second phase merges the sorted fragments to
produce the final sorted file. This algorithm is so
efficient that it saturated the peak node injection
bandwidth on Blue Waters (which is 9.6 GB/
sec). This could create bottlenecks at scale by
saturating the network routers on the system and
interfering with functioning of other users. We
are now measuring the extent of this potential
problem and investigating a workaround by using
data disk pools and/or a staggered version of
the workflow to keep the sort–merge processes
from overlapping.

WHY BLUE WATERS?
This project is timely because hundreds of
sequencing facilities have already opened across
the nation and the deluge of human genomics data
is a reality today. The HPC facilities of tomorrow
need to be prepared to handle the incoming load
of genomic data. We hope that our project will
inform the hardware and software designers
about the requirements imposed by genomics
on the next generation of computing facilities.
The great advantage of using Blue Waters for
this work is that it combines both a state-of-the-
art data system and a large number of nodes to
even make these experiments possible. The Blue
Waters support staff have been instrumental in
helping us figure out and eliminate issues with
computational performance.

INSTRUMENTING HUMAN VARIANT
CALLING WORKFLOW

Allocation: Illinois/0.60 Mnh
PI: L. S. Mainzer1,2,3

Collaborators: Arjun Athreya3, Subho Banerjee3, Ravishankar K. Iyer3, Victor C.
Jongeneel1,2,3, Volodymyr Kindratenko1,3, Zachary Stephens3

1National Center for Supercomputing Applications
2Institute for Genomic Biology, University of Illinois at Urbana–Champaign
3University of Illinois at Urbana–Champaign

EXECUTIVE SUMMARY:

If whole-genome sequencing and analysis
become part of the standard of care within the
next few years, human genetic variant calling will
need to be performed on hundreds of individuals
on any given day. For example, genotyping every
baby born in Illinois would require analysis of

~500 genomes per day. At this scale, the standard
workflow widely accepted in the research and
medical community will use thousands of
nodes at a time and have I/O bottlenecks that
could affect performance even on a world class
petascale system like Blue Waters. We identified
and documented the bottlenecks associated with
the large number of small files created by the
workflow, saturated I/O bandwidth for part of
the workflow, and potential for unbalanced data
load on the file system. Now we are designing
and testing tools and methods to overcome these
problems.

INTRODUCTION
Human variant calling is becoming the
computational tool of choice to help diagnose
intractable diseases and cancers. This
bioinformatics tool searches for differences
between a patient’s genome and that of a
reference, or average, of a human population.
It is likely that in the not-too-distant future,
every state and major metropolitan area would
produce enough human genetic sequencing data
to require their own HPC facility to analyze
those data. What kinds of challenges would
such a computational facility face, and what
preparations would be necessary to ensure good
performance with sustained throughput?

METHODS & RESULTS
We set up the standard GATK-based workflow
[1] and tested a number of alternative tools at
every step in the computation in an effort to
shorten the computation wall time per genome.
In addition, we benchmarked the CPU, RAM, and
I/O system across the workflow using Perfsuite
[2], Cray Profiler [3], OVIS [4], Valgrind [5],
and some of the software we developed. This
work generated close collaborations with Cray,
the Blue Waters support team, and groups on
campus, and identified several performance
issues, most of which have to do with data I/O.

Variant calling is a big-data workflow when
used in a sustained fashion on hundreds of
samples per day. The required disk space is at the
petascale on a daily basis. Even if the intermediary
files are removed after the workflow is complete,
they still need to be created, stored, and managed
for the duration, and also in case one of the steps
fails. The vast majority of these data are generated
in the form of small files, which creates several
concerns.

Creating, reading, and writing large numbers
of small files can create an I/O bottleneck if the
files are not placed uniformly across the file
system. We found that the Lustre file system
on Blue Waters places files relatively evenly
across disks, according to our measurements.
We continue to explore situations that could
create unbalanced file placement and introduce
tools into the workflow to prevent that from
happening.

Handling large numbers of files can strain
the metadata servers and result in uneven node
performance, which affects both variant calling
itself and other users on the system. We are
investigating methods to do bookkeeping for
deep collections of directories to lessen the load
on the metadata servers and make data handling
faster.

This workflow may benefit from storage pools.
Usually, HPC jobs are MPI based and require fast
inter-node communication, which means they
benefit from being placed onto adjacent nodes.
However, the variant calling workflow consists
of jobs that run independent computational tasks
on their own nodes. The I/O happens between
the compute nodes and storage disk, not between
compute nodes themselves. Thus, we are testing

BLUE WATERS ANNUAL REPORT 	 2015

158 159

