Massively Parallel Graph Analytics Supercomputing for large-scale graph analytics

#### George M. Slota<sup>1,2,3</sup> Kamesh Madduri<sup>1</sup> Sivasankaran Rajamanickam<sup>2</sup>

<sup>1</sup>Penn State University, <sup>2</sup>Sandia National Laboratories, <sup>3</sup>Blue Waters Fellow gslota@psu.edu, madduri@cse.psu.edu, srajama@sandia.gov

Blue Waters Symposium 12 May 2015



#### Everywhere

#### Everywhere

- Internet
- Social networks, communication
- Biology, chemistry
- Scientific modeling, meshes, interactions





Figure sources: Franzosa et al. 2012, http://www.unc.edu/ unclng/Internet\_History.htm





◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

#### Big

- Internet 50B+ pages indexed by Google, trillions of hyperlinks
- Facebook 800M users, 100B friendships
- Human brain 100B neurons, 1,000T synaptic connections



Figure sources: Facebook, Science Photo Library - PASIEKA via Getty Images







#### Complex

- Graph analytics is listed as one of DARPA's 23 toughest mathematical challenges
- Extremely variable  $O(2^{n^2})$  possible simple graph structures for n vertices
- Real-world graph characteristics makes computational analytics tough

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Complex

- Graph analytics is listed as one of DARPA's 23 toughest mathematical challenges
- Extremely variable  $O(2^{n^2})$  possible simple graph structures for n vertices
- Real-world graph characteristics makes computational analytics tough

- Skewed degree distributions
- Small-world nature
- Dynamic

# Scope of Fellowship Work

Key challenges and goals

- **Challenge**: Irregular and skewed graphs make parallelization difficult
  - **Goal**: Optimization for wide parallelization on current and future manycore processors

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Scope of Fellowship Work

Key challenges and goals

- **Challenge**: Irregular and skewed graphs make parallelization difficult
  - **Goal**: Optimization for wide parallelization on current and future manycore processors

**Challenge**: Storing large graphs in distributed memory

Layout - partitioning & ordering, what objectives and constraints should be used?

Goal: Improve execution time (computation & communication) for simple and complex analytics

# Scope of Fellowship Work

Key challenges and goals

- **Challenge**: Irregular and skewed graphs make parallelization difficult
  - **Goal**: Optimization for wide parallelization on current and future manycore processors

**Challenge**: Storing large graphs in distributed memory

- Layout partitioning & ordering, what objectives and constraints should be used?
- Goal: Improve execution time (computation & communication) for simple and complex analytics
- Challenge: End-to-end execution of analytics on supercomputers
  - End-to-end read in graph data, create distributed representation, perform analytic, output results
  - Goal: Using lessons learned to minimize end-to-end execution times and allow scalability to massive graphs.

# Optimizing for Wide Parallelism

GPUs on Blue Waters and Xeon Phis on other systems

- Observation: most graph algorithms follow a tri-nested loop structure
  - Optimize for this general algorithmic structure
  - Transform structure for more parallelism

# Optimizing for Wide Parallelization

Approaches for improving intra-node parallelism

#### Hierachical expansion

 Depending on degree of a vertex, parallelism handled per-thread, per-warp, or per-multiprocessor

#### Local Manhattan Collapse

 Inner two loops (across vertices and adjacent edges in queue) collapsed into multiple single loop per-multiprocessor

#### Global Manhattan Collapse

 Inner two loops collapsed globally among all warps and multiprocessors

#### General optimizations

 Optimizations applicable to all parallel approaches cache consideration, coalescing memory access, explicit shared memory usage, warp and MP-based primitives

#### Optimizing for Wide Parallelization Performance results - K20 GPUs on Blue Waters

- H: Hierarchical, ML: Local collapse, MG: Global collapse, gray bar: Baseline
- M: local collapse, C: coalescing memory access, S: shared memory use, L: local team-based primitives
- Up to 3.25× performance improvement relative to optimized CPU code!



#### Distributed-memory layout for graphs Partitioning and ordering

- Partitioning how to distribute vertices and edges among MPI tasks
  - Objectives minimize both edges between tasks (cut) and maximal number of edges coming out of any given task (max cut)
  - Constraints balance vertices per part and edges per part
  - Want balanced partitions with low cut to minimize communication, computation, and idle time among parts!
- Ordering how to order intra-part vertices and edges in memory
  - Ordering affects execution time by optimizing for memory access locality and cache utilization
- Both are very difficult with small-world graphs

# Distributed-memory layout for graphs

Partitioning and ordering part 2

- Partitioning
  - Used PULP partitioner for generating multi-constraint multi-objective partitions
  - Only partitioner available that's both scalable to graphs tested on and able to satisfy objectives/constraints
- Ordering
  - Used traditional bandwidth reduction methods from numerical analysis
  - Also used more graph-centric methods based around breadth-first search



#### Distributed-memory layout for graphs Performance results

- Speedups for subgraph counting algorithm for communication and computation
- Effective partitioning can make considerable impact, ordering still important as graphs get large



### Large-scale graph analytics

Previous work for large graph analysis

- External-memory systems MapReduce/Hadoop-like, flash memory
- Tend to be slow and energy intensive
- Using optimizations and techniques from fellowship work efforts
  - Implemented analytic suite for large-scale analytics (connectivity, k-core, community detection, PageRank, centrality measures)
  - Ran on largest currently available public web crawl (3.5B vertices, 129B edges)
  - First known work that has successfully analyzed graph of that scale on a distributed memory system

### Large-scale graph analytics

- Ran algorithm suite on only 256 nodes of Blue Waters, execution time in minutes
- Novel insights gathered from analysis largest communities discovered, communities appear to have scale-free or heavy-tailed distribution

| Largest Communities Discovered (numbers in millions) |                                       |                                   |                                                                        |
|------------------------------------------------------|---------------------------------------|-----------------------------------|------------------------------------------------------------------------|
| Pages                                                | Internal Links                        | External Links                    | Rep. Page                                                              |
| 112<br>18<br>9<br>8<br>7<br>6                        | 2126<br>548<br>516<br>186<br>57<br>41 | 32<br>277<br>84<br>85<br>83<br>21 | YouTube<br>Tumblr<br>Creative Common:<br>WordPress<br>Amazon<br>Flickr |



イロト 不得下 イヨト イヨト

-

## Summary of accomplishments

- Optimizations for manycore parallelism result in up to a 3.25× performance improvement for graph analytics executing on GPU
- Modifications to in-memory storage of graph structure results in up to a 1.48× performance improvement for distributed analytics running with MPI+OpenMP on Blue Waters
- First-ever analysis of largest to-date web crawl (129B hyperlinks) on a distributed memory system
- Running on 256 nodes of Blue Waters, we are able to run several complex graph analytics on the web crawl in minutes of execution time

# Summary of accomplishments - publications

 High-performance Graph Analytics on Manycore Processors

- To appear in the Proceedings of the 29th IEEE International Parallel and Distributed Processing Symposium (IPDPS15)
- Distributed Graph Layout for Scalable Small-world Network Analysis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- In submission
- Supercomputing for Web Graph Analytics
  - In submission
- Poster at IPDPS15
- Poster at SC15 (tentative)

## Conclusions and Going Forward

- Real-world graphs = big, complex, difficult to effectively run on in parallel
- Demonstrated methodology for thread-node-system level optimization for small-world skewed graphs
- Hopefully this work will enable:
  - Implementation of more complex analytics for large networks
  - Scaling to larger networks and on larger future systems
  - Greater insight into larger networks than currently possible

#### Thanks to Blue Waters and NCSA!

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070, ACI-1238993, and ACI-1444747) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work is also supported by NSF grants ACI-125381, CCF-1439057, and the DOE Office of Science through the FASTMath SciDAC Institute. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.