
Scientific Software Ecosystems:
Why and How
Blue Waters Webinar Series

https://bluewaters.ncsa.illinois.edu/webinars
November 8, 2017

Lois Curfman McInnes
MCS Division

Argonne National Laboratory

Michael Heroux
Sandia National Laboratories

St. Johns University

https://bluewaters.ncsa.illinois.edu/webinars

3

New webinar track:
Scientific Software
Ecosystems

Objectives:
• Promote quality reusable research software for

computational and data-enabled discovery
• Promote community efforts to improve research software

quality, culture, credit, collaboration, …
While considering issues in scientific software ecosystems

Target participants: Entire CSE/HPC community
• Applications scientists, developers of reusable software

(math/CS/apps), stakeholders

4

User perspective:
Focus on primary interests
• Reuse algorithms and data

structures developed by experts
• Customize and extend to

exploit application-specific
knowledge

• Cope with complexity and
changes over time

Why is reusable scientific
software important for you?

Provider perspective:
Share your capabilities
• Broader impact of your work
• Motivate new directions of

research

• More efficient, robust, reliable, sustainable software
• Improve developer productivity
• Better science

Software
user

Software
provider

5

Outline

• Motivation
• Libraries: Reusable research software
• Managing risks of external software use
• Toward scientific software ecosystems

– xSDK

• International community efforts
• Get involved!

6

• Collaborators

• IDEAS Scientific Software Productivity Project

• Developers and users of PETSc and Trilinos

• DOE Exascale Computing Project

• SIAM Activity Group on Computational Science and
Engineering

• U.S. Department of Energy

Acknowledgments

ideas-productivity.org

https://ideas-productivity.org/

7

What is CSE?
• Computational Science &

Engineering (CSE):
development and use of
computational methods for
scientific discovery
– all branches of the sciences,

engineering and technology
– support decision-making across

a spectrum of societally
important apps

• CSE: essential driver of
scientific and
technological progress

Reference: Research and Education in Computational Science & Engineering,
U. Rüde, K. Willcox, L.C. McInnes, H. De Sterck, et al., Oct 2016,
https://arxiv.org/abs/1610.02608

https://arxiv.org/abs/1610.02608

8

Software: Foundation of sustained CSE
collaboration and scientific progress

Invention and development of new
computational algorithms

Visualization of
solutions

Mathematical
modeling

Analysis of
mathematical models

Analysis of
computational

algorithms

Computational
solution of

 application problems

Data
analysis

Development of efficient,
robust, and sustainable

CSE software

9

CSE simulation relies on high-performance
numerical algorithms and software

• Develop a mathematical model
of the phenomenon of interest

• Approximate the model using a
discrete representation

• Solve the discrete
representation

• Adapt and refine the mesh or
model

• Incorporate different physics,
scales

These steps require: mesh generation, partitioning, load balancing, high-order
discretization, time integration, linear and nonlinear solvers, eigensolvers, mesh

refinement, multiscale/multiphysics coupling methods, etc.

discretization

algebraic solvers

meshes

physics models

refine

Simulation loop

10

CSE analysis builds on the CSE simulation loop … and
relies on even more numerical algorithms and software

These steps require: adjoints, sensitivities, algorithmic differentiation, sampling,
ensemble simulations, uncertainty quantification, data analytics, optimization

(derivative free and derivative based), inverse problems, etc.

discretization

algebraic solvers

meshes

physics models

refine

Simulation loop

uncertainty quantification

data analytics

sensitivities/derivatives

CSE simulation loop

optimization / design

Analysis loop

11

Trends and challenges for CSE software

• Fundamental trends:
– Disruptive hardware changes

• Require algorithm/code refactoring

– Need coupling, optimization, sensitivities
• Multiphysics, multiscale, data analytics

• Challenges:
– Need refactoring: Really, continuous change
– Modest funding for app development: No monolithic apps
– Requirements are unfolding, evolving, not fully known a priori

• Opportunities:
– Better design, software practices, and tools are available
– Better software architectures: toolkits, libraries, frameworks
– Open-source software, community collaboration

ALCF early production system

12

Outline

• Motivation
• Libraries: Reusable research software
• Managing risks of external software use
• Toward scientific software ecosystems

– xSDK

• International community efforts
• Get involved!

13

• Software library: a high-quality, encapsulated, documented,
tested, and multiuse software collection that provides
functionality commonly needed by application developers
– Organized for the purpose of being reused by independent (sub)programs
– User needs to know only

• Library interface (not internal details)
• When and how to use library functionality appropriately

• Key advantages of software libraries
– Contain complexity
– Leverage library developer expertise
– Reduce application coding effort
– Encourage sharing of code, ease distribution of code

• References:
– https://en.wikipedia.org/wiki/Library_(computing)
– What are Interoperable Software Libraries? Introducing the xSDK

Software libraries facilitate CSE progress

https://en.wikipedia.org/wiki/Library_(computing)
https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-InteroperabilityWhatAreInteroperableSoftwareLibraries-V0.2.pdf

14

WHY USE LIBRARIES

15

• A farmer had chickens and pigs. There was a total of 60 heads and 200
feet. How many chickens and how many pigs did the farmer have?

• Let x be the number of chickens, y be the number of pigs.
• Then:

x + y = 60
2x + 4y = 200

• From first equation x = 60 – y, so replace x in second equation:
2(60 – y) + 4y = 200

• Solve for y:
120 – 2y + 4y = 200
2y = 80
y = 40

• Solve for x: x = 60 – 40 = 20.
• The farmer has 20 chickens and 40 pigs.

16

• A restaurant owner purchased one box of frozen chicken and another
box of frozen pork for $60. Later the owner purchased 2 boxes of
chicken and 4 boxes of pork for $200. What is the cost of a box of
frozen chicken and a box of frozen pork?

• Let x be the price of a box of chicken, y the price of a box of pork.
• Then:

x + y = 60
2x + 4y = 200

• From first equation x = 60 – y, so replace x in second equation:
2(60 – y) + 4y = 200

• Solve for y:
120 – 2y + 4y = 200
2y = 80
y = 40

• Solve for x: x = 60 – 40 = 20.
• A box of chicken costs $20 and a box of pork costs $40.

17

• A restaurant owner purchased one box of frozen chicken and another
box of frozen pork for $60. Later the owner purchased 2 boxes of
chicken and 4 boxes of pork for $200. What is the cost of a box of
frozen chicken and a box of frozen pork?

• Let x be the price of a box of chicken, y the price of a box of pork.
• Then:

x + y = 60
2x + 4y = 200

• From first equation x = 60 – y, so replace x in second equation:
2(60 – y) + 4y = 200

• Solve for y:
120 – 2y + 4y = 200
2y = 80
y = 40

• Solve for x: x = 60 – 40 = 20.
• A box of chicken costs $20. A box of pork costs $40.

Problem Statement

Variables

Solution Method

Translate Back

Problem Setup

18

Why reusable libraries?

• Many types of problems
• Similar algorithms
• Separation of concerns:

– Problem statement
– Translate to math
– Set up problem
– Solve problem
– Translate back

App

SuperLU

19

Importance of math libraries
• Computer solution of math problems is hard:

– Floating point arithmetic not exact:
• 1 + ε = 1, for small ε > 0
• (a + b) + c not always equal to a + (b + c)

– High fidelity leads to large problems: 1M to 10B equations
– Clusters require coordinated solution across 100 – 1M

processors

• Sophisticated solution algorithms and libraries
leveraged:
– Solver expertise highly specialized, expensive
– Write code once, use in many settings

20

WHAT YOU SHOULD KNOW
THAT WE WON’T DISCUSS

21

Many important tools and libraries

• Performance Tools: PAPI, HWLOC
• Array Libraries: Global Arrays, Kokkos, RAJA
• I/O: SCR, MPI_IO, ADIOS, ALPINE, VTK
• Many more

• Our focus: Math libraries as part of the ecosystem

22

BLAS and LAPACK
• BLAS: vector-vector, matrix-vector, matrix-matrix functions

– High-performance (vendor optimized)
– You are probably using BLAS, even if you don’t know it.

• LAPACK:
– Large collection of linear algebra functions
– Fortran and C APIs
– Shared memory parallel (mostly through parallel BLAS)
– Dense, banded, tridiagonal
– Real and complex, float and double

• LAPACK linear solvers: Many dense linear solvers:
– DGESV: Single function call to solve for x

• Double GEneral SolVe
• dgesv(n, nrhs, a, lda, ipiv, b, ldb, info)
• D = double real, S = single real (float), C = single complex, Z = double complex

– 2-part call: DGETRF/DGETRS: factorization/solve
– DSYSV, DHESV, DPOSV: symmetric, Hermitian, positive definite, resp.

23

Matlab
• Matrix Laboratory:

– Industrial quality technical computing platform
– Many toolboxes for important problem domains
– A very rational productivity option on a single compute node
– Some distributed parallel support, but more complicated

• Solve Ax = b in Matlab?
x = A\b;

– Backslash symbol represents complex decision tree
– Considerations:

• Size, sparsity, condition number, …
• Tim Davis: Backslash guy

• If Matlab works for your problem sizes, use it.
• Makes great prototyping environment in other cases

24

Problem solving environments
• Many productivity enhancing environments:

– Numpy, Julia, Jupyter, others

• Python wrappers:
– SWIG-based and others
– Wrap high-performance libraries underneath

• Can be the right tool (and compete with
Matlab):
– Especially for exploration, but even for production

settings
– Not generally used on supercomputers, although

always discussed

25

HIGH-PERFORMANCE
NUMERICAL LIBRARIES

26

Early software libraries:
• EISPACK, LINPACK, MINPACK, etc.
• National Energy Software Center,

1972-1991
– Founded & directed by Margaret

Butler
• Remarkable Career of a Pioneering

Computational Scientist, SIAM News, Nov 2013

History of early CSE:
• Hybrid Zone: Computers and

Science at Argonne National
Laboratory, 1946-1992, Charles
Yood, Docent Press, 2013

Fascinating history of early CSE

– social history of computing: intersection of people, science,
and the activity of computing

https://sinews.siam.org/About-the-Author/the-remarkable-career-of-a-pioneering-computational-scientist
https://www.amazon.com/Hybrid-Zone-Computers-Laboratory-1946--1992/dp/0988744902/ref=sr_1_1?ie=UTF8&qid=1367335455&sr=8-1&keywords=hybrid+zone+yood

27

Broad range of HPC numerical software

• AMReX - https://ccse.lbl.gov/AMReX
• Chombo - https://commons.lbl.gov/display/chombo
• Clawpack - http://www.clawpack.org
• Deal.II - https://www.dealii.org
• FEniCS - https://fenicsproject.org
• hypre - http://www.llnl.gov/CASC/hypre
• libMesh - https://libmesh.github.io
• MAGMA - http://icl.cs.utk.edu/magma
• MOOSE - http://mooseframework.org
• PETSc/TAO – http://www.mcs.anl.gov/petsc
• SUNDIALS - http://computation.llnl.gov/casc/sundials
• SuperLU - http://crd-legacy.lbl.gov/~xiaoye/SuperLU
• Trilinos - https://trilinos.org
• Uintah - http://www.uintah.utah.edu
• waLBerla - http://www.walberla.net

2
7

Some packages with general-purpose, reusable algorithmic
infrastructure in support of high-performance CSE:

… And many more projects address important aspects of
high-performance CSE ... Explore, use, contribute!

See info about scope,
performance, usage,
including
• tutorials
• demos
• examples
• how to contribute

https://ccse.lbl.gov/AMReX
https://commons.lbl.gov/display/chombo
http://www.clawpack.org/
https://www.dealii.org/
https://fenicsproject.org/
http://www.llnl.gov/CASC/hypre
https://libmesh.github.io/
http://icl.cs.utk.edu/magma
http://mooseframework.org/
http://www.mcs.anl.gov/petsc
http://computation.llnl.gov/casc/sundials
http://crd-legacy.lbl.gov/~xiaoye/SuperLU
https://trilinos.org/
http://www.uintah.utah.edu/
http://www.walberla.net/

28

Two key aspects of HPC library design
• Library interfaces that are independent of physical

processes and separate from choices of algorithms and
data structures
– Cannot make assumptions about program startup or the use of state
– Cannot seize control of ‘main’ or assume MPI_COMM_WORLD

▪ Abstractions for mathematical objects
(e.g., vectors and matrices), enable
dealing with composite operators and
changes in architecture
– Any state data must be explicitly

exchanged through an interface to
maintain consistency

Reference: Multiphysics simulations: Challenges and opportunities, D.E. Keyes,
L.C. McInnes, C.S. Woodward, et al., IJHPCA, special issue, Feb 2013

https://doi.org/10.1177/1094342012468181

29

Highly scalable multilevel solvers and preconditioners.

Unique user-friendly interfaces. Flexible software design.

Used in a variety of applications. Freely available.

http://www.llnl.gov/CASC/hypre

▪ Conceptual interfaces

— Structured, semi-structured, finite elements, linear
algebraic interfaces

— Provide natural “views” of the linear system

— Provide for more efficient (scalable) linear solvers
through more effective data storage schemes and
more efficient computational kernels

▪ Scalable preconditioners and solvers

— Structured and unstructured algebraic multigrid
(including constant-coefficient solvers)

— Maxwell solvers, H-div solvers, and more

— Matrix-free Krylov solvers

▪ Open source software

— Used worldwide in a vast range of applications

— Can be used through PETSc and Trilinos

— Available on github

Magneto-

hydrodynamics

Electro-

magnetics

Elasticity / Plasticity

Facial surgery

Lawrence Livermore National Laboratory

hypre

http://www.llnl.gov/CASC/hypre

30

PETSc/TAO:
Portable, Extensible Toolkit for Scientific
Computation / Toolkit for Advanced
Optimization

Scalable algebraic solvers for PDEs. Encapsulate
parallelism in high-level objects. Active & suppported
user community. Full API from Fortran, C/C++, Python.

https://www.mcs.anl.gov/petsc

PETSc provides the backbone of

diverse scientific applications.

clockwise from upper left: hydrology,

cardiology, fusion, multiphase steel,

relativistic matter, ice sheet modeling

▪ Easy customization and
composability of solvers
at runtime

— Enables optimality via
flexible combinations of
physics, algorithmics,
architectures

— Try new algorithms by
composing new/existing
algorithms (multilevel,
domain decomposition,
splitting, etc.)

▪ Portability & performance

— Largest DOE machines,
also clusters, laptops

— Thousands of users
worldwide

Preconditioners

Krylov Subspace Solvers

Nonlinear Algebraic Solvers

Time Integrators

Computation &
Communication Kernels

Optimization

Domain-
Specific
Interfaces

Structured Mesh
Unstructured Mesh

Quadtree / Octree
Networks

Vectors MatricesIndex
Sets

https://www.mcs.anl.gov/petsc

31

Supernodal Sparse LU Direct Solver. Unique

user-friendly interfaces. Flexible software design.

Used in a variety of applications. Freely available.

http://crd-legacy.lbl.gov/~xiaoye/SuperLU

▪ Capabilities
— Serial (thread-safe), shared-memory (SuperLU_MT, OpenMP

or Pthreads), distributed-memory (SuperLU_DIST, hybrid MPI+
OpenM + CUDA).

• Implemented in C, with Fortran interface

— Sparse LU decomposition, triangular solution with multiple
right-hand sides

— Incomplete LU (ILU) preconditioner in serial SuperLU

— Sparsity-preserving ordering:

• Minimum degree ordering applied to ATA or AT+A

• Nested dissection ordering applied to ATA or AT+A [(Par)METIS, (PT)-Scotch]

— User-controllable pivoting: partial pivoting, threshold pivoting,
static pivoting

— Condition number estimation, iterative refinement.

— Componentwise error bounds

▪ Open source software
— Used worldwide in a vast range of applications

— Can be used through PETSc and Trilinos

— Available on github

SuperLU

Widely used in commercial software, including

AMD (circuit simulation), Boeing (aircraft design),

Chevron, ExxonMobile (geology), Cray's LibSci,

FEMLAB, HP's MathLib, IMSL, NAG, SciPy,

OptimaNumerics, Walt Disney Animation.

ITER tokamak quantum mechanics

1
2

3
4

6
7

5L

U
1

6

9

3

7 8

4 52

http://crd-legacy.lbl.gov/~xiaoye/SuperLU

32

Trilinos

https://trilinos.org

[Science image(s) and caption goes here.]

▪ Optimal kernels to optimal
solutions

— Geometry, meshing

— Discretization, load balancing

— Scalable linear, nonlinear,
eigen, transient, optimization,
UQ solvers

— Scalable I/O, GPU, manycore

▪ 60+ packages

— Other distributions: Cray
LIBSCI, Github repo

— Thousands of users,
worldwide distribution

— Laptops to leadership systems

Optimal kernels to optimal solutions. Over 60 packages.
Laptops to leadership systems. Next-gen systems,
multiscale/multiphysics, large-scale graph analysis.

https://trilinos.org/

33

Outline

• Motivation
• Libraries: Reusable research software
• Managing risks of external software use
• Toward scientific software ecosystems

– xSDK

• International community efforts
• Get involved!

34

Risks in using external software

• Risk of not being in control of the software that is
being leveraged, or its long-term availability
– Concern about long-term maintenance of the 3rd-party

software
– Ability to influence the development of the 3rd-party

software to enhance or maintain its relevance to the
application being developed

– Concern about the ‘‘return on investment’’ of time
spent in learning the 3rd-party software

• Software portability
• Software quality
• Software sustainability

35

Managing risks in using external software

• Strategy for an existing code
1. Identify functionality in your code that could be replaced by a 3rd party
2. Create or isolate an interface (function call) that calls your code as

though it is 3rd party
3. Integrate 3rd party code as an option to use instead of yours
4. Future: Quickly integrate other 3rd party codes via the same interface

• Strategy for a new code
1. Study available 3rd party options that provide functionality
2. Create an interface that supports more than one similar 3rd party code
3. Write adapter interfaces that support two or more 3rd party options

36

Outline

• Motivation
• Libraries: Reusable research software
• Managing risks of external software use
• Toward scientific software ecosystems

– xSDK

• International community efforts
• Get involved!

37

Software libraries are not enough

“The way you get programmer productivity is
by eliminating lines of code you have to write.”
– Steve Jobs, Apple World Wide Developers Conference, Closing Keynote, 1997

• Well-designed libraries provide critical functionality …
But alone are not sufficient to address all aspects of
next-generation scientific simulation and analysis.

• Applications need to use software packages in
combination on ever evolving architectures

http://www.youtube.com/watch?v=3LEXae1j6EY#t=41m26s

38

Example: Multiscale, multiphysics modeling of
watershed dynamics requires combined use of
independent packages

Subsurface applications (blue boxes) and their present usage of SDK
domain components (orange boxes) and numerical libraries (green boxes).
The xSDK presently includes domain components Alquimia
(biogeochemistry interface) and PFLOTRAN (subsurface flow) and the
numerical libraries hypre, PETSc, SuperLU, and Trilinos. CLM, Chombo,
and SUNDIALS (hashed colors) are targeted for later inclusion.

Trilinos PETSc

hypre
SuperLU

Chombo

PFLOTRAN CrunchFlow

CLM 4.5

CLM

Alquimia

CLM 3.x
CLM 5.x?

Amanzi/ATS ParFlow

SUNDIALS

39

Need software ecosystem perspective

“We often think that when
we have completed our
study of one we know all
about two, because ‘two’ is
‘one and one.’ We forget
that we still have to make a
study of ‘and.’ ”

− Sir Arthur Stanley Eddington (1892−1944), British astrophysicist

Ecosystem: A group of independent but
interrelated elements comprising a unified whole

Ecosystems are challenging!

40

Difficulties in combined use of independently
developed software packages

Challenges:
• Obtaining, configuring, and

installing multiple independent
software packages is tedious
and error prone.
– Need consistency of compiler

(+version, options), 3rd-party
packages, etc.

• Namespace conflicts
• Incompatible versioning
• And even more challenges for

deeper levels of interoperability

Levels of package
interoperability:
• Interoperability level 1

• both packages can be used
(side by side) in an application

• Interoperability level 2
• the libraries can exchange

date (or control data) with
each other

• Interoperability level 3
• each library can call the other

library to perform unique
computations

Reference: What are Interoperable Software Libraries? Introducing the xSDK

https://ideas-productivity.org/wordpress/wp-content/uploads/2016/12/IDEAS-InteroperabilityWhatAreInteroperableSoftwareLibraries-V0.2.pdf

41

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-scale Scientific Software Development Kit (xSDK)

SW engineering
• Productivity tools.
• Models, processes.

Domain components
• Reacting flow, etc.
• Reusable.

Documentation content
• Source markup.
• Embedded examples.

Testing content
• Unit tests.
• Test fixtures.

Build content
• Rules.
• Parameters.

Library interfaces
• Parameter lists.
• Interface adapters.
• Function calls.

Shared data objects
• Meshes.
• Matrices, vectors.

Native code & data objects
• Single use code.
• Coordinated component use.
• Application specific.

Extreme-scale Science Applications

Domain component interfaces
• Data mediator interactions.
• Hierarchical organization.
• Multiscale/multiphysics coupling.

Extreme-
scale
Scientific
Software
Ecosystem

42

Classic vs Ecosystem Approaches
• Classic application development approach:

– App developers write most code
– Source code considered private
– Make occasional use of libraries, but only those “baked into” the OS
– Portability challenges, unmanaged disruptions: Low risk. But…

• Ecosystem-based application development approach:
– App developers use composition, write glue code & unique functionality
– Source code includes substantial 3rd party packages
– Risks (if 3rd party code is poor):

• Dependent on portability of 3rd party code
• Upgrades of 3rd party package can be disruptive (interface changes, regressions)

– Opportunities (if 3rd party code is good):
• 3rd party improvements are yours (for free!)
• Portability to new architectures is seamless

• Ecosystem imperative: High quality is essential, more affordable

43

xSDK: https://xsdk.info
Building the foundation of an extreme-scale
scientific software ecosystem

xSDK community policies: Help address challenges in interoperability
and sustainability of software developed by diverse groups at different institutions

xSDK compatible package: must satisfy the
mandatory xSDK policies
Topics include: configuring, installing, testing, MPI usage,
portability, contact and version information, open source
licensing, namespacing, and repository access

Also specify recommended policies, which
currently are encouraged but not required
Topics include: public repository access, error handling,
freeing system resources, and library dependencies

xSDK member package:
(1) Must be an xSDK-compatible package, and
(2) it uses or can be used by another package in the

xSDK, and the connecting interface is regularly
tested for regressions.

xSDK policies 0.3.0: Nov 2017
• Combined use of independently

developed packages

Impact:
• Improved code quality, usability,

access, sustainability
• Foundation for work on

performance portability and
deeper interoperability

We encourage feedback
and contributions!

https://xsdk.info/

44

xSDK release 0.2.0: Packages can be readily used
in combination by multiphysics, multiscale apps

Alquimia hypre

Trilinos

PETSc

SuperLU

More
contributed

libraries

HDF5

BLAS

More
external
software

Multiphysics Application C

Application A Application B

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

SW engineering
• Productivity tools.
• Models, processes.

Domain components
• Reacting flow, etc.
• Reusable.

xSDK functionality,
April 2017

Tested on key machines
at ALCF, NERSC, OLCF,
also Linux, Mac OS X

Notation:
A B:
A can use B to provide
functionality on behalf of A

PFLOTRAN

More
domain

components

SDK
strategy

ramping up
across entire

ECP ST
software

stack

Coming soon:
xSDK-0.3.0

(with MAGMA,
MFEM,

PLASMA,
SUNDIALS)

45

xSDK community policies
xSDK compatible package: Must satisfy
mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake
options.
M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures.
M5. Provide a documented, reliable way to contact the
development team.
M6. Respect system resources and settings made by other
previously called packages.
M7. Come with an open source license.
M8. Provide a runtime API to return the current version
number of the software.
M9. Use a limited and well-defined symbol, macro, library,
and include file name space.
M10. Provide an accessible repository (not necessarily
publicly available).
M11. Have no hardwired print or IO statements.
M12. Allow installing, building, and linking against an outside
copy of external software.
M13. Install headers and libraries under <prefix>/include/
and <prefix>/lib/.
M14. Be buildable using 64 bit pointers. 32 bit is optional.
M15. All xSDK compatibility changes should be sustainable.
M16. The package must support production-quality
installation compatible with the xSDK install tool and xSDK
metapackage.

Version 0.3.0,
Nov 2017

Also specify recommended
policies, which currently are
encouraged but not required:
R1. Have a public repository.

R2. Possible to run test suite under valgrind
in order to test for memory corruption
issues.

R3. Adopt and document consistent system
for error conditions/exceptions.

R4. Free all system resources it has acquired
as soon as they are no longer needed.

R5. Provide a mechanism to export ordered
list of library dependencies.

xSDK member package: Must be an
xSDK-compatible package, and it uses
or can be used by another package in
the xSDK, and the connecting interface
is regularly tested for regressions.

https://xsdk.info/policies

We welcome feedback. What policies
make sense for your software?

https://xsdk.info/policies

46

Outline

• Motivation
• Libraries: Reusable research software
• Managing risks of external software use
• Toward scientific software ecosystems

– xSDK

• International community efforts
• Get involved!

47

Community software ecosystems
require high quality software
• Complex,

intertwined
challenges

• Need community
efforts to
– Improve software quality
– Change research culture
– Promote collaboration
– Etc.

• Get involved!

Reference: Daniel S. Katz, Software in Research:
Underappreciated and Underrewarded, 2017

eResearch Australasia conference, Oct 20, 2017,
https://doi.org/10.6084/m9.figshare.5518933

https://doi.org/10.6084/m9.figshare.5518933.v1

48

Synergistic efforts to enable quality reusable
software are essential for next-generation CSE

• Computational Science Stack Exchange
• NUMFocus
• Software Carpentry, Data Carpentry
• Software Sustainability Institute
• WSSSPE
• IEEE THPC Software Engineering Practices Initiative
• Better Scientific Software
• Projects such as

• Molecular Sciences Software Institute
• IDEAS Software Productivity project

• And many more …

49

Resources … and opportunities to get involved

• Computational Science Stack Exchange:
SciComp.StackExchange.com
– Question and answer site for scientists using computers to

solve scientific problems

• NUMFocus: https://www.numfocus.org
– Umbrella nonprofit that supports and promotes open source

scientific computing

• Software Carpentry: http://software-carpentry.org
– Volunteer non-profit organization dedicated to teaching basic

computing skills to researchers.
– Lessons: https://software-carpentry.org/lessons/

http://www.scicomp.stackexchange.com/
https://www.numfocus.org/
http://software-carpentry.org/
https://software-carpentry.org/lessons/

50

Resources … and opportunities to get involved

• Software Sustainability Institute:
http://www.software.ac.uk
– Institute to support UK’s research software community:

cultivating better, more sustainable, research software to
enable world-class research

– Guides: https://www.software.ac.uk/resources/guides-everything

• WSSSPE:
http://wssspe.researchcomputing.org.uk
– International community-driven organization that promotes

sustainable research software

• IEEE TCHPC Software Engineering Practices
Initiative: http://tc.computer.org/tchpc/home-
page/software-engineering-practices/
– Leading a conversation on impactful software engineering

practices for HPC

http://www.software.ac.uk/
https://www.software.ac.uk/resources/guides-everything
http://wssspe.researchcomputing.org.uk/
http://tc.computer.org/tchpc/home-page/software-engineering-practices/

51

Resources for software productivity &
sustainability—key element of overall
scientific productivity

Develop

Package
• ‘What Is’ Doc
• ‘How To’ Doc
• Slides
• Policies

Deploy
• Use case teams
• ideas-productivity.org
• Conferences, publications
• Tutorials (ATPESC, SC)
• Webinars
• PI Meetings
• xSDK

Best Practices
Content Lifecycle

Write Comment

Synthesize
Discuss

Identify Topic

• What Is Software Configuration?
• How to Configure Software
• What Is Performance Portability?
• How to Enable Performance

Portability
• What Are Software Testing Practices?
• How to Add and Improve Testing in a

CSE Software Project

• What Is Good
Documentation?

• How to Write Good
Documentation

• What Is Version
Control?

• How to Do Version
Control with Git

What Is & HowTo docs: Brief sketches of best practices

[And more]

Approach: Collaborate with the community to curate, create, & disseminate
software methodologies, processes, and tools that lead to improved scientific software

Tutorials
• Introduction to Git
• Better (Small) Scientific Software

Teams
• Improving Reproducibility through

Better Software Practices
• Testing and Verification
• Code Coverage and Continuous

Integration
• An Introduction to Software

Licensing

Webinars: Best Practices for HPC Software Developers
• Managing Defects in HPC Software
• Barely Sufficient Project Management: A few techniques for

improving your scientific software efforts
• Using the Roofline Model and Intel Advisor
• Intermediate Git
• Python in HPC Content available via

https://ideas-productivity.org/
Transitioning soon to:

www.ideas-productivity.org

https://ideas-productivity.org/events

52

Under development: New web-
based hub for scientific software
improvement exchange

Contribute! Share your insights on CSE software practices and processes:
• https://github.com/betterscientificsoftware/betterscientificsoftware.github.io/blob/master/README.md
• Or search “github betterscientificsoftware”

BSSw Software Platform
Component
Technology

Backend Frontend
Google Docs GitHub Ruby on Rails

Location Google Drive betterscientificsoftware
GitHub organization

betterscientificsoftware.io

Purpose • Rapid collaborative
content development.

• Multi-user typing,
suggest edits,
comments.

• Content creation, refinement,
management (from Google
Drive).

• Content packaging for use with
BSSw.io

• User-facing portal
• Polished backend content
• Blogs, forums
• Mailing lists.

Contributors Community subject matter
experts

Community subject matter experts,
BSSw staff

BSSw staff. Web
development experts.

Consumers BSSw GitHub Backend BSSw Frontend CSE community

Content
Notes

Content migrates to
GitHub after it stabilizes

Content managed in git repos,
markdown

Content from Backend

Launching at
SC17

https://github.com/betterscientificsoftware/betterscientificsoftware.github.io/blob/master/README.md

53

Collaborative community software ecosystems
help improve CSE productivity and sustainability

Impact
• Better: Science, portability,

robustness, composability
• Faster: Execution,

development, dissemination
• Cheaper: Fewer staff hours

and lines of code

• What makes sense for your software?
– Consider resources for improving

software quality
– What community software ecosystems

do you want to use and be a part of?

• Get involved!
– Various community efforts
– Upcoming Blue Waters Webinars

• Scientific Software Ecosystems track
– Suggestions welcome: Contact Scott Lathrop lathrop@illinois.edu

• See other tracks too, in particular new track on Software Engineering

• Coming soon
– SC17 BOF: Software Engineering & Reuse in CSE (November 14, 2017)
– Special Issue, IEEE CiSE (Stay tuned … CFP to be posted soon)

https://bluewaters.ncsa.illinois.edu/webinars
mailto:lathrop@illinois.edu
http://sc17.supercomputing.org/presentation/?id=bof144&sess=sess374
https://www.computer.org/cise/

