
PRAC: Systems Software for Scalable Applications

Pavan Balaji, William Gropp, Ewing Lusk, Rajeev Thakur, Antonio J. Peña

Final Report
June 2013

Abstract

This project aimed at improvements to MPI to enable various optimizations including topology-
aware mapping of MPI processes on the Gemini network of Blue Waters, optimization of NAMD/Charm++
over MPI on Blue Waters, and integration of GPU and MPI related data movement for performance and
programmer convenience.

Current HPC systems utilize a variety of interconnection networks, with varying features and com-
munication characteristics. MPI normalizes these interconnects with a common interface used by most
HPC applications, either directly or indirectly through libraries and runtime systems such as Charm++.
However, network properties can have a significant impact on application performance. We explore the
impact of the interconnect on application performance on irregular/anisotropic networks, such as the
Cray Gemini network on Blue Waters, which provides twice the Y-dimension bandwidth in the X and Z
dimensions.

On systems with GPUs, such as Blue Waters, current hybrid programming models require the user to
explicitly manage the movement of data between host, GPU, and the network, which is both tedious and
inefficient. We have developed a unified programming interface, MPI-ACC, that provides a convenient
and optimized way of end-to-end data communication among CPUs and GPUs.

1 Introduction

A key component in high-performance computing (HPC) systems is the interconnection network, which
integrates an array of computational resources into a single system and provides efficient data movement.
Interconnection networks continue to be an area of high innovation, as they strive to keep pace with rapidly
increasing levels of concurrency and greater demand for communication performance. As interconnects
evolve, system topologies, link properties, and communication characteristics vary across systems.

Irregular and anisotropic topologies, such as the three-dimensional torus recent Cray XE and XK systems
implement, pose a challenge for the efficient use of the network resources. The recent trend of employing
accelerators —such as Graphics Processing Units (GPUs) or those based on the Intel Many Integrated Core
(MIC) architecture— pose an additional level of irregularity on the data path, due to non-uniform memory
access (NUMA) issues.

Most HPC applications use the Message-Passing Interface (MPI) [21] as a portable interface for ex-
pressing data movement, either directly or beyond higher-level libraries such as the runtime of the Charm++
programming model [15]. Our goal is to provide MPI with mechanisms to efficiently accomplish data trans-
fers on a wide range of environments, including irregular/anisotropic networks and accelerator-equipped
systems, in order to leverage highly-efficient communications at no cost to the wide community of MPI
users.

1

The major contributions included in this document are:

1. A better adaptation of the Cray MPI library to the Charm++ runtime.

2. The study of the potential implications of the anisotropic behavior of Cray Gemini networks on ap-
plications.

3. The incorporation of efficient GPU awareness into MPI routines.

The rest of this document is organized as follows: Section 2 presents our work, Section 3 reviews some
related work, followed by conclusions in Section 4.

2 Accomplishments

This section covers the work we carried out within the project. We first describe our research on the net-
work’s anisotropic behavior. Next, we introduce our work on assessing the performance difference between
Cray’s MPI and communications based on the interconnect’s native application programming interfaces
(APIs). Last, we introduce our work to include GPU awareness into the MPI library.

2.1 Analysis of Topology-Dependent MPI Performance on Blue Waters

We also investigated the implications of the anisotropic behavior of the Blue Waters’ Gemini network on
applications [19]. This network presents largely different behaviors in all three dimensions of the three-
dimensional torus it forms. Despite both X and Z dimensions presenting the same number of links between
routers, their performance behavior differs dramatically. In addition, the Y dimension features half of the
number of links of any other dimension. Furthermore, every two nodes share a network application-specific
integrated circuit (ASIC), i.e., a network topology coordinate, which contributes to the anisotropic behavior
of this network.

After a characterization of this interconnect by means of point-to-point benchmarks, we evaluated the
behavior of MPI collectives along the different dimensions and planes of the network topology of this
system. We proved that when the nodes sharing a network coordinate are considered to be placed along the
dimension featuring lesser network links, communication performance along that direction is higher than
expected, thus maximizing the use of the network resources (see Figure 1). Hence, applications performing
dimension-wise communications can highly benefit of an optimal process placement, as in Figure 2 for
the case of planewise MPI Allgather collectives. Additionally, we demonstrated by means of a halo
benchmark that including awareness of the network topology in the MPI library can outperform the heuristic-
based rank ordering of this system, as shown in Figure 3.

The results of our study demonstrate the benefits of an MPI-network topology matching for common
application scenarios. Since the current MPI implementation on Cray systems ignores the reorder parameter
meant for this purpose, currently topology-sensitive applications need to be concerned about network place-
ment, aided (one hopes) by external libraries. This situation poses an unnecessary overhead for application
developers, who should be able to rely on the capabilities of the MPI library for this purpose. We concluded
that MPI libraries would benefit from the incorporation of existing topology matching work.

2.2 Optimizing Charm++ over MPI on Blue Waters

We are currently evaluating MPI on the heavily irregular topology of the XE systems. As a first step,
we have investigated the performance difference between MPI and native communication models on the

2

Figure 1: Internode aggregate transfer rate for 1 MB messages; 2 parallel paths concurrently transfer data.

Figure 2: Planewise MPI Allgather on a 7× 7× 7 cube.

3

Figure 3: Three-dimensional Halo benchmark. Plain: user-distributed ranks along the user-defined
application-level topology, based on their original ordering; Cart create: ranks distributed by the MPI li-
brary; Custom: the MPI topology matches the network topology, considering the double nodes per ASIC to
be placed along the Y dimension.

XE/XK system. Specifically, we used the NAMD molecular dynamics simulation [22] as a case study and
compared the performance of its native implementation on the Blue Waters network with that of its MPI-
based implementation [11].

A particular challenge in utilizing MPI as a runtime system for NAMD-like applications is that MPI
is tuned for expected messaging semantics, where messages are explicitly “received” by the recipient. In
contrast to this, the NAMD application and the Charm++ model of parallelism that it utilizes depend on
unexpected message communication to trigger method invocations on shared objects.

We have investigated MPI implementation and specification aspects to resolve the impedance mismatch
between these models, from unexpected message queue lengths to the frequency of calls to the MPI progress
engine. We investigated the effects of the alternating computation versus communication phases of single-
threaded Charm++. We also examined the trade-offs of utilizing eager versus rendezvous protocols in MPI.
The most notable performance improvement came from modifying the MPI implementation to increase the
eager/rendezvous threshold so that unexpected Charm++ messages could be transmitted using the eager
protocol.

The results from this study are shown in Figure 4. We found that changing the default MPI eager
threshold leads to a faster initialization phase in NAMD, as well as an improvement in timestep duration.
In contrast to the rendezvous protocol, the eager protocol removes an initial synchronization step, and more
closely resembles the asynchrony of the Charm++ model.

We have utilized this performance study to improve the MPI implementation to allow the library (such
as Charm++) to perform per-communicator tuning of the MPI stack. These changes have already been
incorporated into the MPICH stack and are being passed down to Cray to incorporate in their production
MPI implementation.

4

 0

 10

 20

 30

1024 2048 4096 8192 16384 32768

m
s/

st
e
p

of cores

Baseline MPI (non-SMP)
Tuned MPI (non-SMP)

uGNI (SMP)

Figure 4: Comparison of NAMD over MPI versus the native Charm++ module.

2.3 Incorporating GPU awareness into MPI

We have also developed MPI-ACC [4], a system that enables users to call MPI functions directly on data
stored in GPU memory, with MPI-ACC doing the work of efficiently moving data between GPU and host
using various optimizations, as overlapping GPU and network data transfers, or efficiently driving intranode
communications to avoid unnecessary memory copies [14] or assisted by direct memory access (DMA)
engines [13]. This support brings users highly optimized data transfers involving GPU memory spaces while
insulating them from its development complexity [5]. An example of the performance gains enabled by our
implementation is shown in Figure 5. We have also developed techniques to efficiently handle movement
between GPU and host of noncontiguous data described using MPI derived datatypes [12], and studied the
efficiency of the different synchronization and ordering semantics which can be exposed to the users [3].
We are currently evaluating the performance of these optimizations on Blue Waters using applications such
as epidemiology simulation and seismic modeling.

3 Related Work

Recently, Sun et al. [20] examined Charm++ implementation issues on current Cray Gemini-based systems,
while Kumar et al. [16] studied the same on IBM Blue Gene/Q systems. These works look at optimizations
to the native (non-MPI) networking layer built into Charm++. The techniques may serve as the basis for
future Charm++-over-MPI optimizations to help mitigate the programming model impedance mismatch.

Performance evaluations of communications employing the MPI interface have been covered for the
different supercomputers since MPI emerged two decades ago. Recent examples include studies of the
performance behavior of MPI on the Blue Gene/P [7, 8, 9]. Performance evaluations on recent Cray XE/XK
platforms have also been carried out. Early experience on the Titan system at Oak Ridge was described
in [10]. Subsequent work includes an evaluation of the overhead of the Cray MPI implementation (as a
justification for the design of a low-level benchmarking tool for internode, inter-GPU data transfers) [18]

5

Figure 5: Internode communication latency for GPU-to-GPU (CUDA) data transfers. Similar performance
is observed for OpenCL data transfers.

and an evaluation of the Partitioned Global Address Space runtime system of these platforms [23]. Prior
work suggested that the placement of the nodes sharing the same Gemini ASIC in the Y direction was
beneficial [6]. However, this work lacked a justificative base performance evaluation. Technical details
supporting the anisotropy of this fabric were also missing in that work.

MVAPICH [1] is another implementation of MPI based on MPICH and is optimized for remote DMA
(RDMA) networks such as InfiniBand. MVAPICH2-GPU, starting on release v1.8 of MVAPICH, includes
support for transferring CUDA [17] memory regions across the network [24] (point-to-point, collective
and one-sided communications). In order to use this, however, each participating system should have an
NVIDIA GPU of compute capability 2.0 or higher and CUDA v4.0 or higher, because MVAPICH2-GPU
leverages the unified virtual address (UVA) feature of CUDA. On the other hand, MPI-ACC takes a more
portable approach: we support data transfers among CUDA, OpenCL [2], and CPU memory regions; and
our design is independent of library version or device family. By including OpenCL support in MPI-ACC,
we automatically enable data movement between a variety of devices, including GPUs from NVIDIA and
AMD, CPUs from IBM and Intel, AMD Fusion, IBM’s Cell Broadband Engine, and Intel MIC. Also, we
make no assumptions about the availability of key hardware features (e.g., UVA) in our interface design,
thus making MPI-ACC a truly generic framework for heterogeneous CPU-GPU systems.

4 Conclusions

MPI and Charm++ cater to different programming paradigms: the former favors BSP-styled codes, whereas
the latter supports a more asynchronous design. While the former may be used as the networking engine for
the latter, this comes at a small but perceptible cost. We investigated the reasons behind this overhead and
tweaked the MPI library parameters to attain better performance for hybrid Charm++/MPI codes.

We also studied the anisotropic implications of the Cray Gemini network on MPI communications. The
results of our study demonstrate the benefits of an MPI-network-topology matching for common application

6

scenarios. Additionally, we suggested that MPI libraries will benefit from the incorporation of existing
topology matching work, which is planned for future work.

Finally, we developed MPI-ACC, an integrated and extensible framework that allows end-to-end data
movement in accelerator-connected systems. We implemented several optimizations in MPI-ACC, such as
pipelining, dynamic adjustment of pipeline parameters based on PCI Express affinity and NUMA effects,
and efficient management of CUDA and OpenCL resource objects. We are currently working on its integra-
tion into the MPICH code.

Acknowledgments

This research is part of the Blue Waters sustained-petascale computing project, which is supported by the
National Science Foundation (award number OCI 07-25070) and the state of Illinois. Blue Waters is a
joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing
Applications. This work is also part of the “System Software for Scalable Applications” PRAC allocation
support by the National Science Foundation (award number OCI-1036216). This work was supported in
part by a NEIS-P2 subaward from NCSA/UIUC and in part by the U.S. Dept. of Energy under contract
DE-AC02-06CH11307.

References

[1] MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE. http://mvapich.cse.
ohio-state.edu.

[2] The OpenCL specification. http://www.khronos.org/registry/cl/specs/
opencl-1.0.29.pdf, 2008.

[3] Ashwin M Aji, Pavan Balaji, James Dinan, Wu-chun Feng, and Rajeev Thakur. Synchronization and
ordering semantics in hybrid MPI+GPU programming. 2013.

[4] Ashwin M. Aji, James Dinan, Darius Buntinas, Pavan Balaji, Wu-chun Feng, Keith R. Bisset, and Ra-
jeev Thakur. MPI-ACC: An integrated and extensible approach to data movement in accelerator-based
systems. In 14th IEEE International Conference on High Performance Computing and Communica-
tions, Liverpool, UK, June 2012.

[5] Ashwin M. Aji, Lokendra S. Panwar, Feng Ji, Milind Chabbi, Karthik Murthy, Pavan Balaji, Keith R.
Bisset, James Dinan, Wu-chun Feng, John Mellor-Crummey, Xiaosong Ma, and Rajeev Thakur. On the
efficacy of GPU-integrated MPI for scientific applications. In Proceedings of the 22nd international
symposium on High-performance parallel and distributed computing, HPDC’13, pages 191–202, New
York, NY, USA, 2013. ACM.

[6] Carl Albing, Norm Troullier, Stephen Whalen, Ryan Olson, Joe Glenski, Howard Pritchard, and Hugo
Mills. Scalable node allocation for improved performance in regular and anisotropic 3D torus super-
computers. In Recent Advances in the Message Passing Interface, volume 6960 of LNCS. 2011.

[7] Pavan Balaji, Anthony Chan, William Gropp, Rajeev Thakur, and Ewing Lusk. Non-data-
communication overheads in MPI: Analysis on Blue Gene/P. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface, pages 13–22. Springer, 2008.

7

http://mvapich.cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

[8] Pavan Balaji, Anthony Chan, Rajeev Thakur, William Gropp, and Ewing Lusk. Toward message
passing for a million processes: Characterizing MPI on a massive scale Blue Gene/P. Computer
Science-Research and Development, 24(1-2):11–19, 2009.

[9] Pavan Balaji, Harish Naik, and Narayan Desai. Understanding network saturation behavior on large-
scale Blue Gene/P systems. In 15th International Conference on Parallel and Distributed Systems
(ICPADS), pages 586–593. IEEE, 2009.

[10] Arthur S. Bland, Jack C. Wells, Bronson Messer, Oscar R. Hernandez, and James H. Rogers. Titan:
Early experience with the Cray XK6 at Oak Ridge National Laboratory. In CUG 2012, May 2012.

[11] Ralf Gunter, David Goodell, James Dinan, and Pavan Balaji. Optimizing Charm++ over MPI. In 11th
Annual Charm++ Workshop, April 2013.

[12] John Jenkins, James Dinan, Pavan Balaji, Nagiza F. Samatova, and Rajeev Thakur. Enabling fast, non-
contiguous GPU data movement in hybrid MPI+GPU environments. In IEEE International Conference
on Cluster Computing (Cluster), September 2012.

[13] F. Ji, A.M. Aji, J. Dinan, D. Buntinas, P. Balaji, R. Thakur, W. Feng, and X. Ma. DMA-assisted,
intranode communication in GPU accelerated systems. In 14th IEEE International Conference on
High Performance Computing and Communications (HPCC), 2012.

[14] Feng Ji, A.M. Aji, J. Dinan, D. Buntinas, P. Balaji, Wu chun Feng, and Xiaosong Ma. Efficient
intranode communication in GPU-accelerated systems. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops PhD Forum (IPDPSW), pages 1838–1847, 2012.

[15] Laxmikant V. Kale and Sanjeev Krishnan. CHARM++: A portable concurrent object oriented system
based on C++. SIGPLAN Not., 28(10):91–108, October 1993.

[16] Sameer Kumar, Yanhua Sun, and L. V. Kale. Acceleration of an Asynchronous Message Driven Pro-
gramming Paradigm on IBM Blue Gene/Q. In Proceedings of 26th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Boston, USA, May 2013.

[17] NVIDIA. CUDA. http://www.nvidia.com/cuda.

[18] Antonio J. Peña and Sadaf R. Alam. Evaluation of inter- and intra-node data transfer efficiencies
between GPU devices and their impact on scalable applications. In The 13th International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2013.

[19] Antonio J. Peña, Ralf G. Correa Carvalho, James Dinan, Pavan Balaji, Rajeev Thakur, and William
Gropp. Analysis of topology-dependent MPI performance on Gemini networks. In Proceedings of
EuroMPI 2013, Madrid, Spain, September 2013.

[20] Yanhua Sun, Gengbin Zheng, Chao Mei, Eric J. Bohm, James C. Phillips, Laximant V. Kalé, and
Terry R. Jones. Optimizing fine-grained communication in a biomolecular simulation application
on Cray XK6. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages 55:1–55:11, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[21] The MPI Forum. http://www.mpi-forum.org, 2013.

8

http://www.nvidia.com/cuda
http://www.mpi-forum.org

[22] University of Illinois at Urbana-Champaign. NAMD - scalable molecular dynamics. http://www.
ks.uiuc.edu/Research/namd.

[23] Abhinav Vishnu, Monika Bruggencate, and Ryan Olson. Evaluating the potential of Cray Gemini inter-
connect for PGAS communication runtime systems. In 19th Annual Symposium on High Performance
Interconnects (HOTI), 2011.

[24] Hao Wang, Sreeram Potluri, Miao Luo, Ashish Singh, Sayantan Sur, and Dhabaleswar Panda.
MVAPICH2-GPU: optimized GPU to GPU communication for InfiniBand clusters. Computer Sci-
ence – Research and Development, 26:257–266, 2011.

9

http://www.ks.uiuc.edu/Research/namd
http://www.ks.uiuc.edu/Research/namd

	Introduction
	Accomplishments
	Analysis of Topology-Dependent MPI Performance on Blue Waters
	Optimizing Charm++ over MPI on Blue Waters
	Incorporating GPU awareness into MPI

	Related Work
	Conclusions

