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Introduction

Economics is a complex system.
Economics research ignores this

I Economists analyze simple stylized models of pieces of the system
I Pencil and paper preferred to computers and code

We are trying to change that
I Create robust and general tools that can use state-of-the art

numerical methods on modern computer architectures
I Climate change policy is the application



Climate Change Policy Analysis

Question: What can and should be the response to rising CO2
concentrations?

I Analytical tools in the literature: IAMs (Integrated Assessment
Models)

I Two components: economic model and climate model
I Interactions: Economy emits CO2 that raises world average

temperature that reduces economic productivity.

I Existing IAMs cannot study dynamic decision-making in an evolving
and uncertain world

I Most are deterministic where economic actors know perfectly future
economic and climate events.

I Limitations are due to economists’ aversion to modern
computational tools



Uncertainty and Risk

All agree that uncertainty needs to be a central part of any IAM analysis
Multiple forms of uncertainty

I Risk: productivity shocks, taste shocks, uncertain technological
advances, weather shocks

I Parameter uncertainty: policymakers do not know parameters that
characterize the economic and/or climate systems

I Model uncertainty: policymakers do not know the proper model or
the stochastic processes

Theme of our work
I We can pursue quantitative studies with far fewer simplifications
I We can incorporate modern models of macroeconomic systems
I We can pursue uncertainty quantification (UQ)



Cai-Judd-Lontzek DSICE Model

Extends Nordhaus’ DICE model
I Climate system
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I Economic system:
I gross output: Yt ≡ f (kt , ζt , t) = ζtAtk
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I productivity state ζt+1 = gζ(ζt , χt , ω
ζ
t ) is stochastic productivity

process
I the long run risk process, χt , is very persistent

I damage factor: Ωt ≡
(
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I emission control cost: Λt ≡ ψ1−θ2
t θ1,tµ

θ2
t , where µt is policy choice

I output net of damages and emission control: Ωt(1− Λt)Yt



Dynamic Optimization Problem
I Epstein-Zin Preferences: recursive utility function

I u(C , L) = (Ct/Lt )
1−1/ψ

1−1/ψ Lt : utility flow per period
I ψ: dynamic consumption flexibility (default: 1.5)
I γ: risk aversion (default: 10)
I Γ = 1−γ

1−1/ψ : composite factor for preferences

I State: x = (k ,M,T, ζ, χ)

I Bellman equation (V300(x) is fixed, and is the terminal condition)

Vt(x) = max
c,µ

u(Ct , Lt) + β
[
Et

{(
Vt+1

(
x+
))Γ}]1/Γ

,

s.t. k+ = (1− δ)k + Ωt(1− Λt)Yt − Ct ,

M+ = ΦMM + (Et , 0, 0)> ,

T+ = ΦTT + (ξ1Ft , 0)> ,

ζ+ = gζ(ζ, χ, ωζ),

χ+ = gχ(χ, ωχ),



General Operators in Economics Models

I Economics problems can be modeled as difference operator
equations on Banach spaces

I A function Vt(x) represents economic system at time t as a function
of x

I Operator equation is Vt(x) = FtVt+1(x), t = 0, 1...,T − 1 in
appropriate Banach space

I Terminal condition: VT (x) known for time T

I Solve backwards in time, like Hamilton-Jacobi-Bellman PDEs
I People are not particles
I Decisions today depends on expectations of what will be done

tomorrow

I Numerical challenges
I Approximate Vt(x) functions over a compact domain in Euclidean

space - difficult, need to avoid curse of dimensionality
I Approximate Ft operator - easy if you use quadrature
I Solve optimization problem - easy with good code (NPSOL)



Anisotropic Method for Efficient Approximation
We develop a flexible anisotropic approximation; it is adaptive in that we
check accuracy at each iteration

I Anisotropic approximation nodes: N =
∏d

i=1 mi

I Anisotropic Chebyshev polynomial approximation
I notation: φα(x) is product φα1(x)φα2(x)..φαd (x)
I degrees (n1, ..., nd)

V̂ (x; b) =
∑

α≥0,
∑d

i=1 αi/ni≤1

bαφα (x)

I number of terms: J
I complete polynomials have form (n, ..., n),

∑d
i=1 αi ≤ n

I Anisotropic approximation nodes: N =
∏d

i=1 mi , mi = ni + 1

n1 n2 n3 n4 n5 n6 J N speedup vs. complete
6 6 6 6 6 6 924 117,649 1
6 6 6 4 4 2 267 25,725 16
6 4 4 4 2 2 116 7,875 119
6 2 2 2 2 2 42 1,701 1,522



Numerical Dynamic Programming

I Initialization. Choose the approximation grid, X = {xi : 1 ≤ i ≤ N},
and choose functional form for V̂ (x; b). Let V̂ (x; bT ) = VT (x).

I Iterate through steps 1 and 2 over t = T − 1, ..., 1, 0.
I Step 1. Maximization step: Compute

vi = max
ai∈D(xi ,t)

ut(xi , ai ) + βE{V̂ (x+i ; bt+1)},

for each xi ∈ X , 1 ≤ i ≤ N.
I Step 2. Fitting step: compute the bt such that V̂ (x; bt)

approximates (xi , vi ) data.



Blue Waters and Parallelization

Today’s example
I Approximation nodes in x = (k ,M,T, ζ, χ) space: 16,129,575 points
I Total number of optimization problems: five billion
I Use Master-Worker approach for each VFI

Another example incorporating tipping points
I Approximation nodes is x = (k ,M,T, ζ, χ) : 1.5× 109 points
I Total number of optimization problems: 372 billion
I 84K cores
I 8.1 hours (77 core-years)
I Linear scaling
I Each value function iteration uses 12GB in memory



Large Uncertainty from One Case: BAU scenarios
IPCC has promoted the examination of four scenarios

I Supposed to represent range of plausible GHG emission paths
I Used to create input for climate system models

DSICE with one parameterization
I Produces a probabilistic characterization of GHG emissions
I Shows a range of substantially greater that the IPCC scenarios
I IPCC misses the tail we care about!



Social Cost of Carbon in DSICE in BAU
The marginal social cost of carbon could be quite high with significant
probability



Emissions: BAU vs Optimal Policy

Optimal policy would create substantial reduction in emissions



Temperature: BAU vs Optimal Policy

Optimal policy would create substantial reduction in future temperatures



Verification of Results

At each iteration, we verified the accuracy of the approximation by
evaluating approximation errors at a random sample of points in the state
space



Uncertainty Quantification in DSICE

I Economics must do UQ!!!!!!
I Some say “We don’t know enough to do serious analysis”
I However, the same people claim to know answers to policy questions
I Epistemology in economics

I Remember conclusions of theorems, forget the assumptions
I Agree with Einstein’s advocacy of simple models, but forget “not

simpler than necessary”
I Preference for ad hoc models

I Goals: unattainable vs. reasonable
I Parameter and model uncertainty prevents high precision answers
I UQ helps avoid choosing really stupid policies

I Four uncertain parameter values
I climate sensitivity
I damage factor
I utility discount rate
I economic growth trend

I Use Smolyak approximation on 4D parameter space, sweeping over
Smolyak nodes



Surface Response Function for Uncertainty Quantification
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Working Papers Using Blue Waters
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Quantitative Economics.

I Yeltekin, S., Y. Cai, and K.L. Judd (2015). Computing equilibria of
dynamic games. Under review in Operations Research.

I Cai, Y., J. Steinbuks, J.W. Elliott, and T.W. Hertel (2014). The
effect of climate and technological uncertainty in crop yields on the
optimal path of global land use. The World Bank Policy Research
Working Paper 7009, under review in Journal of Environmental
Economics and Management.

I Cai, Y., K.L. Judd, and T.S. Lontzek (2015). Numerical dynamic
programming with error control: an application to climate policy.
Submitted to Operations Research.



Impact

A July, 2014, White House report:
I “The cost of delaying action to stem climate change”
I Incorporated our paper’s conclusion that high SCC can be justified

without assuming the possibility of catastrophic events



Extensions

I Multiple Interacting tipping points
I AMOC, GIS, WAIS, AMAZ, ENSO
I After one tipping event, other tipping points become more or less

likely

I Ag and Forestry - we have 14 continuous states and 2 discrete states
I Multiple sectors
I Learning uncertain parameters

I climate sensitivity
I productivity growth
I damage factor

I These are all multidimensional difference equations in a Banach
space of well-behaved functions
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Conclusions

Economic analysis of policies require the same scale of computational
power as used to solve other complex systems.
Economic problems are different from physics and engineering problems

I Different math
I Unknown functions are relatively smooth, leading to global spectral

methods
I Unknown functions have high dimension

I Different combination of tasks
I Parallelism breaks big problems into smaller, compute-intensive

nonlinear problems
I Economics applications use little communication relative to compute

effort
I Many economics applications can use asynchronous parallelization


