

FINAL REPORT
PRAC Topic: Petascale simulations of complex biological behavior in fluctuating environments

NSF Award ID: 0941360

Principal Investigator: Ilias Tagkopoulos, UC Davis

Milestone/Deliverable Description: Final implementation and final report

Acceptance Criteria: The final implementation satisfies the objectives stated in deliverable
1.0: “Report to include description of the implementation and results. Also, it should
include user experience, dissemination beyond the development team and documentation.”

Summary

During the support period, the software suite EVE 3.0, a new version of the Evolution in
Variable Environments (EVE) framework has been completed. The new parallel model
includes an adaptive dynamic load balancer that is implemented based on the analysis of
benchmarked prototypes presented in previous and current reports. The performance of
the EVE code on the Blue Waters machine is significantly improved, and the code now
scales up to 8,000 MPI processes and 128,000 organisms in a population. Every
evolutionary experiment requires at least thirty-two independent technical replicate runs for
statistics. Therefore, each experiment is potentially scalable up to 256,000 MPI processes.

The combined EVE code incorporates several parallel models: (a) the original model with
a static load balancer; (b) a newly-developed adaptive dynamic load balancer with a non-
fixed population size option; (c) AMPI compatibility; and (d) a serial version of the code for
small local runs. The choice of the optimal model(s) depends on the size of a particular run
and on available computational resources.

The C++ source code, compiled binaries for several standard architectures, and the user
manual with samples are freely available from the project’s website, along with a tutorial on
how to use the tool (more information is available at
http://www.tagkopolouslab.cs.ucdavis.edu/software). The EVE framework was
successfully used recently in microbial evolution research and in the teaching of
undergraduate students. More specifically, it was used in both Spring and Fall of 2012 in
the ECS 124 “Theory and applications of bioinformatics” class, where approximately fifty
undergraduate students used EVE for laboratory assignments related to microbial evolution
and population diversity.

1. Parallel models implemented in EVE 3.0

To improve the scalability and performance of the previous version of EVE (v2.1 published
in April 2012), we implemented an adaptive dynamic load balancer and semi-
global/hierarchical synchronization. While this new parallel model introduces additional
overhead on small jobs, it outperforms our original implementation even for a moderate
number of processes (> 512 MPI processes) and scales up to about 10,000 MPI
processes. This new implementation improves the scalability of the EVE code by a factor of
approximately 10x.

1.1. Static load balancer

As described in the previous report, in the original MPI version of EVE the load (population
of microorganisms) was divided into chunks (sub-populations) of equal size (Figure 1).
Each MPI process was assigned a sub-population of equal, fixed number of organisms.
However, as organisms evolve independently, the computational time per organism (and
therefore per process) changes over time. The need for frequent synchronization of the
population with the environment results in a considerable idling time due to the load
imbalance. Additionally, the load imbalance grows with the population size. This resulted in
a poor scalability of the original code beyond a few thousand organisms since the
probability of the appearance of an unusually large organism, implying more computation
within a particular MPI process, grows with the population size.

Figure 1. Load imbalance in a static load balancing scheme. Ideal computational time
(load) is the average computational time that is required for all MPI processes to update
the entire population over one time step in the case of the ideal load balancing. Effective
computational time is larger (by about 30% in this cartoon) due to the imperfect load
balance in a static scheme with an equal number of organisms per MPI process (core).

Since all organisms in a population are independent and can be updated individually, the
parallelization of the code was quite straightforward. However, the original static load
balancing model unveiled two significant problems that affect scalability: (1) equal load
distribution at time step zero was based on the number of organisms, not the
computational time required by each organism; (2) load distribution at time step zero was
never adjusted during the simulation to accommodate the changes accumulated in an
evolving population.

1.2. Adaptive dynamics load balancer

In EVE 3.0 we have implemented an adaptive dynamic load balancer (Figure 2) that
addresses both of the problems of static load balancing highlighted above.

Firstly, load balancing is adaptive: the load is distributed among processes to equilibrate
the total computational time spent by each process and not the total number of organisms.
As a result, the number of organisms per process is not maintained constant anymore. This
requires the rearrangement of the original code. In particular, the intra-process
communication patterns need to be adjusted and optimized to accommodate the change.

Secondly, load rebalancing is dynamic: rebalancing is performed periodically to minimize
the idling time.

Figure 2. Adaptive load balancer approximates the ideal balance between MPI processes
by redistributing organisms according to the required computational time.

The load balancing problem is essentially a k-partition problem, or more precisely a bin
packing problem: N organisms need to be distributed between k processes (bins) so that
the total computational time is approximately the same on each process. The ideal
(minimal) capacity of each bin would be the average computational time per process. Since
the population is discrete, in reality the effective capacity of the bins need to be increased
relative to the ideal size. To solve the bin packing problem, the load balancer utilizes a
basic ‘first fit’ greedy approximation algorithm on a sorted set of organisms. A non-optimal
communication pattern does not affect the scalability: as organisms grow and evolve
slowly, the balance is maintained except on a few processes and the required rebalancing
effort is normally minimal.

In order to accommodate new adaptive dynamic load balancer, a new population update
scheme was developed for the EVE framework. It allows variable sub-population sizes on
each MPI process. The following is the updated population model:

(i) Each process updates its local sub-population. Organisms that grew above
the division threshold divide and weak organisms are removed from the sub-
population. No inter-process communication in required at this step. In the
original model all divisions were non-local to maintain fixed per-process sub-
population sizes. That reintroduced additional communication overheads,
which are eliminated in the new model.

(ii) Each process creates a list of organisms that need to be sent from it or
received from other processes based on the collected computational time.
The computational time is approximated with the number of links in the
organisms’ networks (it was shown in previous reports that this dependence
is linear).

(iii) Each process (with MPI rank i) establishes pair-wise connections with other
processes in the following order [parallel part]:

(a) Send all organisms that needed to be sent to the processes with a
lower rank than i. The order: ascending ranks and local organisms’
indices.

(b) Receive all organisms that needed to be received from the
processes with a higher rank than i. The order: ascending ranks
and local organisms’ indices.

(c) Send all organisms that needed to be sent to the processes with a
higher rank than i. The order: descending ranks and local
organisms’ indices.

(d) Receive all organisms that needed to be received from the
processes with a lower rank than i. The order: descending ranks
and local organisms’ indices.

1.3. AMPI compatibility

The code was rearranged to become compatible with AMPI (Adaptive MPI) library
specifications. In particular, all data structures were made local to each process and sub-
routine. AMPI migration is performed with the predetermined frequency. The AMPI addition
is compatible with all other parallel models that are implemented in the EVE code. This
work was done in collaboration with Ryan Mokos (NCSA). However the AMPI version of
the code does not show significant performance improvement over the old version of EVE
with the static load balancer. In fact, it scales worse due to the AMPI overhead.

1.4. Semi-global synchronization

All processes are divided into groups to match a physical machine topology.
Synchronization is performed independently within each group. Ideally, each group

matches in size and is mapped to a single node or a single blade. Then, using slices of the
global MPI world communicator that match the topology of inter-connection between
nodes/blades, the collected data is synchronized between groups. The number of inter-
group communications is kept to a minimum. The slices are created using custom made
MPI communicators that replace the global MPI world communicator.

1.4. Serial version

EVE 3.0 can be compiled as a serial application for local test runs. This option also helps
new users to become familiar with the code before using its parallel functionality.

2. Benchmarks and performance

Dynamic adaptive load balancer: Figure 3 depicts the weak scaling of the static and
dynamic load balancers. The old parallel model with static load balancer implemented in
EVE 2.1 (black line) does not scale beyond 1,000 MPI processes. The newly implemented
adaptive dynamic load balancer in EVE 3.0 scales significantly better with reasonable
performance up to about 10,000 MPI processes. Certainly scalability is far from ideal (i.e.,
flat as a function of number of processes), which is the consequence of the biological
model: processes need to be synchronized relatively frequently in order to maintain
“biological coherence” between organisms evolving on different processes.

Figure 3. Weak scaling of dynamic (red) and static (black) load balancer models. Eight
organisms per process, medium mutation rate AND environment, evolving population.

Figure 4 shows the performance of EVE as a function of per-process load while
maintaining a constant number of MPI processes. Theoretically, computational time should
increase linearly with the number of organisms per process. For the smaller number of MPI
processes (512, left panel) the original static load balancer version of the code actually
outperforms dynamic load balancer for a larger number of organisms per process and
scales better than the theoretical estimation. The reason for that is the auto-balancing
effect of large sub-populations on each process: the load automatically averages between

processes. The dynamic load balancer introduces additional overheads, but nevertheless it
scales as expected and even under our theoretical estimation. For larger number of MPI
processes (2,048 MPI processes, right panel) communication overheads in old, the static
balancer model add to computation time (double it), while the dynamic load balancer, for
small average number of organisms per process (up to 16), performs as expected. For
larger loads per process (>32 organisms per process) on a large number of MPI processes
both balancers perform worse than the expectation with dynamic load balancer being the
worst. Therefore for efficient allocation usage no more than 16 organisms per process
should be used in large runs.

0 8 16 24 32 40 48 56 64
0

2

4

6

8

10

12

	

	

	
 T
Im

e	

se

c/
ep

oc
h

N umber	
 of	
 MP I	
 proces s es 	
 in	
 a 	
 s ynchroniz a tion	
 s ub-­‐g roup

	
 S ta tic 	
 load	
 ba lancer
	
 D ynamic 	
 load	
 ba lancer

512	
 proce s s e s

0 8 16 24 32 40 48 56 64
0

4

8

12

16

20

24

28

32

	

	

	
 T
Im

e	

se

c/
ep

oc
h

N umber	
 of	
 MP I	
 proces s es 	
 in	
 a 	
 s ynchroniz a tion	
 s ub-­‐g roup

	
 S ta tic 	
 load	
 ba lancer
	
 D ynamic 	
 load	
 ba lancer

2048	
 proce s s e s

Figure 4. Benchmark results of run times as a function of load per process (i.e., number of
organisms per process). Left and right panels show profiling for 512 and 2,048 MPI
processes, respectively. The dashed red line shows the ideal/theoretical computational
time. Eight organisms per process, medium mutation rate AND environment, evolving
population.

0 64 128 192 256 320 384 448 512 576
0

2

4

6

8

	

	

	
 T
Im

e	

se

c/
ep

oc
h

N umber	
 of	
 MP I	
 proces s es 	
 in	
 a 	
 s ynchroniz a tion	
 s ub-­‐g roup

	
 G loba l	
 s ynchroniz a tion
	
 H iera rchica l/s emi-­‐g loba l	
 s ynchroniz a tion

2,048	
 proce s s e s

Figure 5. Benchmark results for performance of the semi-global/hierarchical
synchronization model (red line) as a function of MPI processes in the lowest level group.
The black line shows performance of the code with purely global synchronization. 2,048

MPI processes, eight organisms per process, medium mutation rate AND environment,
evolving population.

Semi-global/hierarchical synchronization: Figure 5 shows benchmark results for the
semi-global/hierarchical synchronization model against the old, global synchronization
model. The improvement is minimal with the best performance at 32 MPI processes per
lowest level group. This is not surprising, as it matches the node size on Blue Waters.
While the advantage of the new model is not significant, both synchronization models are
completely interchangeable. Therefore, the semi-global/hierarchical model with 32 MPI
processes per lowest level group should be used in our runs. For machines with poor inter-
node communication advantage of the semi-global/hierarchical synchronization with
“topology aware” job mapping is much more significant than on Blue Waters.

3. Documentation

Well documented source code in C++, compiled binaries for several standard
architectures, a tutorial, and samples are available for download at
www.tagkopouloslab.cs.ucdavis.edu. The following distributions are available (each
package includes the manual/tutorial and samples):

EVE-v3.0.source.tar.gz – source code and sample inputs
EVE-v3.0.Linux32.serial.tar.gz – compiled for Linux 32 bit
EVE-v3.0.Windows32.serial.zip – compiled for Windows 32 bit
EVE-v3.0.OSX32.serial.tar.gz – compiled for Mac OSX 32 bit

4. Conclusions and Broader Impacts

EVE is the only microbial evolution simulator that is well parallelized to scale beyond a
thousand MPI processes. The framework is universal and it can be appended with any
other organism’s model (the model is described in the Cell class). EVE is an open source
project and it is available for download from our lab's website. EVE has been used
successfully for undergraduate training and is part of the core lab assignments for the ECS
124 bioinformatics class (50 students/year).

The work that was performed through this direct PRAC support significantly extended the
scalability of EVE in HPC environments in general and the Blue Waters supercomputer
specifically. The work that has been performed in EVE will serve as a stepping stone for
our next microbial simulator that is organism-specific. Towards that goal, we have created
an E. coli simulator, based on a gene expression compendium that we have constructed
from both publicly available and proprietary datasets. The simulator is the first that
integrates various levels of transcription, translation and metabolic interactions. Our
performance analysis and cross-validation testing shows a remarkable performance and
predictive capacity in a number of environmental and gene expression perturbation
settings. The next step is to use the knowledge and code that we developed through this

award to parallelize our E. coli simulator and incorporate populations of cells. This will allow
us to investigate scenarios where emergent behaviors exist on a population level.

References

1. Mozhayskiy V, Tagkopoulos I: Guided evolution of in silico microbial populations in
complex environments accelerates evolutionary rates through a step-wise
adaptation. BMC Bioinformatics 2012, 13(S10):S10.

2. Mozhayskiy V, Tagkopoulos I: Horizontal gene transfer dynamics and distribution of
fitness effects during microbial in silico evolution. BMC Bioinformatics 2012,
13(S10):S13.

