Characterizing Structural Transitions of Membrane Transport Proteins at Atomic Detail

Mahmoud Moradi

PI: Emad Tajkhorshid

Beckman Institute for Advance Science and Technology, University of Illinois at Urbana-Champaign

> NCSA Blue Waters Symposium for Petascale Science and Beyond Sunriver, Oregon May 11, 2015

Outline

Introduction

- GlpT transporter
- Transport cycle thermodynamics

Methodology

- Empirical search for reaction coordinates using nonequilibrium simulations
- Iterative path-finding algorithms and free energy calculations
- Reconstructed thermodynamic cycle of GlpT
 - Free energy profile along the cycle
 - Global and local conformational changes and their coupling

Membrane Transporters

- Transporters: Membrane proteins which actively and selectively transport materials (proton, ions, small molecules) across cell membranes.
- Active transport: Pumping substrates against their concentration gradient (from low to high concentration).
- Source of energy:
 - metabolic energy, e.g. from ATP hydrolysis (primary).
 - electrochemical gradient of an ion (**secondary**).

Alternating-Access Mechanism

Membrane transporters rely on large-scale conformational changes to alternate between inward-facing (IF) and outward-facing (**OF**) states to pump the substrate against its concentration gradient, without being open (having the binding site accessible) to both sides of the membrane simultaneously.

Glycerol-3-phophate (G3P) transporter (GlpT)

- Major facilitator superfamily (MFS)
- Secondary active transporter
- Crystalized in the IF state.

Huang, et al., Science 301, 616 (2003).

- GlpT transports G3P using P_i gradient.
- P_i:P_iexchanger (in the absence of organic phosphate)
- Rate-limiting step: IF-OF interconversion.

Transport cycle thermodynamics

Transport cycle thermodynamics

Reaction Coordinate

Lemieux, et al., Curr. Opin. Struct. Biol. 14, 405 (2004). Law, et al., Biochemistry 46, 12190 (2007).

Full thermodynamic cycle

the only available crystal structure

Key Challenge:

• Slow dynamics

 Timescale gap between feasible all-atom molecular dynamics (MD) simulations and actual functionally relevant biomolecular processes.

Sampling Strategies:

Long simulation

- application-specific computers
- Multiple-copy simulations[¬]
 - distributed computing
- Enhanced sampling
 - biased/adaptive simulations

Loosely-coupled multiple-copy algorithms (petascale computing)

Step 1: $OF_a \leftrightarrow IF_a$

Reaction Coordinate

Theory/Method:

Moradi et al., **CPL 518** 109 (**2011**) Moradi et al., **JCP 140** 034114,5 (**2014**) Moradi et al., **JCTC 10** 2866 (**2014**)

Application:

Moradi et al., **PNAS 106** 20746 (**2009**) Moradi et al., **NAR 41** 33 (**2013**) Moradi et al., **PNAS 110** 18916 (**2013**)

Path-finding algorithms

- String Method (finding approximate minimum free energy pathways on high-dimensional spaces)
 - A pathway is represented by a
 "string", i.e., an ordered series of
 images {ξ_i} connecting reactant and
 product regions.
 - The string is iteratively updated according to some ``rule'' until converges to a stationary solution: $\xi(s) \parallel \mathbf{g}^{-1}(\xi) \nabla_{\xi} F(\xi)$
- Maragliano, Fischer, Vanden-Eijnden, and Ciccotti J. Chem. Phys. 2006, 125, 024106.
- Ren, Vanden-Eijnden, Maragakis, and E
 J. Chem. Phys. 2005, 123, 134109.
- Vanden-Eijnden and Venturoli; J. Chem. Phys. 2009, 130, 194103.

Path-finding algorithms

- String Method with Swarms of Trajectories (SMwST):
 - For each image **tens of copies** are launched:
 - Start with an initial string $\{\boldsymbol{\xi}_i\}$
 - (1) Restrain M copies of each image at the current ξ_i
 - (2) Release the restraint
 - (3) Update the centers: $\xi_i = \langle \xi_i^t \rangle$
 - (4) Reparametrize

Collective variables:

$$\{Q\} = \{Q_1, Q_2, ..., Q_{12}\}$$

Number of replicas: Simulation time: 50 X 20 = 1000 1 ns/replica Pan, Sezer, and Roux J. Phys. Chem. B 2008, 112, 3432–3440.

Free energy calculations

 Bias-exchange umbrella sampling (BEUS) (Loosely coupled multiple-copy MD)
 – Umbrella sampling

$$U_B(X_i^t) = \frac{1}{2}k(X_i^t - X_i)^2$$

Beaction coordinate

– Replica-exchange MD

Replica2 Replica1

$$p(\mathbf{x}_{1}\mathbf{x}_{2} \to \mathbf{x}_{2}\mathbf{x}_{1}) = \min\left(1, \frac{\pi_{1}(\mathbf{x}_{2})\pi_{2}(\mathbf{x}_{1})}{\pi_{1}(\mathbf{x}_{1})\pi_{2}(\mathbf{x}_{2})}\right) \lim_{\substack{\mathbf{x}_{1} \in \mathbb{R}^{2} \\ \min\left(1, \frac{e^{-\beta U_{1}(\xi_{2})}e^{-\beta U_{2}(\xi_{1})}}{e^{-\beta U_{1}(\xi_{1})}e^{-\beta U_{2}(\xi_{1})}}\right)} \lim_{\substack{\mathbf{x}_{2} \in \mathbb{R}^{2}} \left(1, \frac{e^{-\beta U_{1}(\xi_{2})}e^{-\beta U_{2}(\xi_{1})}}{e^{-\beta U_{2}(\xi_{1})}}\right)} \lim_{\substack{\mathbf{x}_{2} \in \mathbb{R}^{2}} \left(1, \frac{e^{-\beta U_{2}(\xi_{1})}e^{-\beta U_{2}(\xi_{1})}}{e^{-\beta U_{2}(\xi_{1})}}\right)}} \lim_{\substack{\mathbf{x}_{2} \in \mathbb{R}^{2}} \left(1, \frac{e^{-\beta U_{2}(\xi_{1})}e^{-\beta U_{2}(\xi_{1})}}{e^{-\beta U_{2}(\xi_{1})}}\right)}} \lim_{\substack{\mathbf{x}_{2} \in \mathbb{R}^{2}} \left(1, \frac{e^{-\beta U_{2}(\xi_{1})}e^{-\beta U_{2}(\xi_{1})}}{e^{-\beta U_{2}(\xi_{1})}}\right)}} \lim_{\substack{\mathbf{x}_{2} \in \mathbb{R}^{2}} \left(1, \frac{e^{-\beta U_{2}(\xi_{1})}e^{-\beta U_{2$$

Step 1: $OF_a \leftrightarrow IF_a$

Step 2: $IF_a \leftrightarrow IF_b$

Step 3: $OF_a \leftrightarrow OF_b$

Step 4: $OF_b \leftrightarrow IF_b$

Simulation protocols

	Transition	Technique	Collective Variables	# of Replicas × Runtime		
1		BEUS	(Q_1, Q_7)	12×40 ns	=	0.5 ms
2	$IF_a \leftrightarrow OF_a$	SMwST	{Q}	1000×1 ns	=	1 ms
3		BEUS	{Q}	50×20 ns	=	1 ms
4		BEUS	Z_{Pi}	30×40 ns	=	1.2 ms
5	$\mathbf{m}_{a} > \mathbf{m}_{b}$	BEUS	$(\{Q\}, Z_{Pi})$	30 × 40 ns	=	1.2 ms
6	$OF_a \leftrightarrow OF_b$	BEUS	Z_{Pi}	30×40 ns	=	1.2 ms
7		BEUS	$(\{Q\}, Z_{Pi})$	30×40 ns	=	1.2 ms
8		BEUS	(Q_1, Q_7)	24×20 ns	=	0.5 ms
9		BEUS	Z_{Pi}	15×30 ns	=	0.5 ms
10	$IF_b \leftrightarrow OF_b$	2D BEUS	$(\Delta RMSD, Z_{Pi})$	200×5 ns	=	1 ms
11		SMwST	$(\{Q\}, Z_{Pi})$	1000×1 ns	=	1 ms
12		BEUS	$(\{Q\},Z_{Pi})$	50×20 ns	=	1 ms
13	Full Cycle	BEUS	$(\{Q\}, Z_{Pi})$	150 × 50 ns	=	7.5 ps
Total Simulation Time18.7 ms						
$\begin{array}{c} \text{GlpT} & & & & \\ \text{Crystal Structure} & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & $						

Each replica consists of ~150,000 atoms

Distinct conformational transition pathways

Quaternion-based principal components (**QPCs**) represent different modes of concerted motions of transmembrane helices.

Characterizing protein local conformational changes within the lumen:

- Salt bridges
 stabilizing different
 conformations.
 - Residues involved in binding.

Conformational dynamics of the binding site

Summary

- Reconstructed thermodynamic cycle of GlpT
 - Alternating access mechanism characterized (atomic level)
 - Substrate binding lowers the IF-OF transition barrier
 - Substrate binding changes the IF-OF transition pathway
 - Coupling between local and global conformational changes
- Reconstructing transport cycles in membrane transporters using enhanced sampling techniques and petascale computing

Moradi M., Enkavi G., and Tajkhorshid E., under review by Nature Communication (2015).

Acknowledgement

Emad Tajkhorshid Giray Enkavi

Tajkhorshid Lab, Beckman Institute, UIUC

Extreme Science and Engineering Discovery Environment

Rocker-switch model

